
Abstract: 
An applicative real-time multiprocessor is de-
scribed. Machine language, communication and 
integrated circuit implementation are applicative 
and based on graph rewriting.

User processes are applicative and is a derivation 
from HDLs. The machine language is a full-fledged 
applicative language with influences from functional 
and logic languages.

High order functions are complemented by a more 
general concept where programs are representa-
tions described in the basic language. It is an ex-
tension of a quoting mechanism.

Times for ports are synchronized. Input and output 
are timed. A real-time system performs a unification 
between a set of courses of events and the port 
values. Binding strength defines the port direction.

The machine is based on graph reduction de-
scribed by equivalence rules. The control of a mul-
tiprocessor is by emitting such rules and imple-
menting a structure arithmetic unit rewriting a two 
level expression. Garbage collection is a real time 
execution in parallel with the problem domain.

The multiprocessor consists of a rich network and a 
massive number of reduction processors. They 
store expressions as words as well in communica-
tion ports, clock, arithmetic unit as memory. The 
memory is associative.
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INTRODUCTION
I performed from the early 1970’s a number of mul-
tiprocessor architecture projects. With the experi-
ence together with funding from Swedish air-force a 
project aiming at a new design concept was 
formed. The project was named rp8601 (=reduction 
processor, year 1986, number 1). Further on ASEA 
(now ABB Ltd) took over the project. ASEA was 
split into ABB Ltd and Incentive AB, who made a 
considerable investment in the project. The project 
was shut down 1994 due to other interests of the 
mother company.

This report describes the rp8601 architecture. Dur-
ing this large project a number of changes were 
made due to requests by the funder. However the 
report describes the original ideas together with the 
experience from the project.

The concept WYSWYG (What You See What You 
Get) for document editors was introduced during 
the 1980´s. The change was dramatic compared to 
earlier methods. Young people of today would think 
of the earlier methods as awkward, slow, farfetched 
and error prone.

Early computer languages like FORTRAN devel-
oped to more rich languages. The size of the lan-
guages exploded, with Algol 68 as an extreme. 
Subsets as Jovial, Pascal and Modula was much 
less in size. Unix came with C. The development 
was by software system engineers. Meanwhile a 
mathematically based community introduced lan-
guages based on lambda calculus. Lisp was fol-
lowed by a number of functional languages like ML 
and further on by Haskell. Meantime a new para-
digm, the logic language based on Horn clauses, 
was created with Prolog as its first language. These 
late languages are applicative and would be the 
computer language counterpart to WYSWYG.

None of these languages could directly model 
hardware, time and processes. Simula 67 intro-
duced a concept of message passing. Later on 
more mathematically based initiatives created 
process algebras such as CSP and CCS. Message 
passing could be viewed as a side effect. Even if 
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they use a functional approach when describing 
creating and receiving the messages the system 
described would not be side-effect free.

Other system maintenance and control is not sup-
ported by the languages. Instead other types of 
maintenance concepts are shoe horned into the 
software.

Meanwhile the silicon circuit community designed 
their abstractions. They described hardware. In 
contrary to the software approaches everything 
was in parallel. Spice was an early language where 
everything was components and analogue signals. 
Later VHDL was introduced - a committee work, 
probably with people from different communities. It 
worked in two modes - the procedural and the ap-
plicative! Hardware description languages, HDL, 
introduced the concept of component, parameter-
ised components, libraries and communication be-
tween components. They also introduced wave 
forms - a way to describe the output/input for a 
process.

The applicative languages has now been present 
for about 30 years and still they are not popular. 
The community is rather small and in the develop-
ment was more to be expected. However organiza-
tions using the concept have good experience. The 
HDLs are a must in the industry. At the time rp8601 
started there was hardly no industrial projects using 
applicative languages and the experience was low.

The wish list from system designers was long. The 
rp8601 was a challenge to replace the von Neu-
mann computer architecture by an applicative ap-
proach. Much was to be developed. Were there 
any key issues that has to be solved in order to 
facilitate a complete applicative computer system?

PROBLEMS - CHALLENGES
Traditional von Neumann computers have influ-
enced the thinking in computing in such a high way 
that it is hard to step outside this paradigm. This is 
the case from high level architecture and down to 
gates. The rp8601 is an attempt to step outside that 
paradigm. This will influence almost everything 
from languages over architecture down to gates. In 
this section a birds view is used to point out chal-
lenges to solve.

Massive multiprocessing
rp8601 approach is a scalable architecture from 
small and simple to large massive parallel ap-
proaches. Traditional high performance computers 
consists of  rather few traditional processors with 
some type of communication devices. Applications 
are allocated to processors and memory cells.

The rp8601 goal is to have a space of molecules 
being processors. Within this structure the repre-
sentation of an application is floating.  There is 
some type of communication between the mole-
cules. From performance point of view this allows 
the highest possible allocation of executing re-
sources. From flexibility point of view the structure 
could be squeezed to fit an application. 

The idea is that the problem should be loaded in 
the computer by almost neglecting its structure in a 
corresponding way that cash memories implements 
an invisible memory hierarchy.

In order to facilitate this, the problem loaded must 
be represented in such a way that it contains all 
information on synchronization, communication etc 
needed in a distributed environment. From my un-
derstanding the only available form is a directed 
graph. The vertices are tiny processes controlling 
itself and its directed edges. One of the possible 
execution mechanisms is graph reduction.

The rp8601 implements this by using a small proc-
ess called closure. It stores an expression in the 
size of 4 words.

Key issues: performance, flexibility, scalability

Trace graph - a tool
Traditionally, single processor application perform-
ance analysis is based on counting processor cy-
cles. The hardware influence is almost only a 
weighted average between execution time of in-
structions. When cash memories are used the 
problem of "locality" or working set complicates the 
analysis.

When using a multiprocessor based on traditional 
processors with or without cash memories this 
analysis is not easy. Communicating processes 
form an execution order that is almost impossible to 
analyze. Only with a detailed knowledge of the ap-
plication an estimate could be done.

The graph reduction situation is quite different. The 
graph is well specified. A method based on a "trace 
graph" is used. It contains all expressions used 
when executing the graph. It corresponds to an 
expansion of the graph to all its parts used during 
the execution. 

An analysis of the trace graph gives:

• each edge in the graph uses one read, one 
write operation and one communication,

• each expression-rewrite corresponds to one 
vertex rewrite

• the trace graph has a depth being the length 
from the root to the leaves
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• the size is described by the number vertices 
and the number of edges

In a large problem the depth is generally much less 
than the size. The effective latency time is the 
longest of the vertices rewrites (including reads and 
writes) and communication over edges.

The time of  a vertex rewrite is constant. The com-
munication time is dependent on the "length" of the 
edge. For a given graph the number of vertex op-
erations is fixed. There is a mean number of edges 
directed to a vertex. There is a ratio of link commu-
nication time to vertex rewrite time. These three 
numbers signify an execution of an application.

To improve performance vertices with many edges 
are to be duplicated and placed more local. Verti-
ces are allocated in order to reduce the edge 
length.

The challenge is to use such a tool to analyze how 
to allocate and schedule a problem.

Key issues: performance analysis

Address domains
Traditional multiprocessors may have a shared 
memory or a number of local memories. They use 
an address being number to depict a memory cell. 
Because the rp8601 consists of a structure of 
molecule processors such an address scheme is 
not possible.

All edges pointing to the same vertex are named a 
net in rp8601. The address is a mechanism to 
specify the nets. There are graph rewrite opera-
tions on nets. Therefore the mechanism of ad-
dressing is to be integrated with the rewrite opera-
tions.

The rp8601 implements the addressing by one do-
main for each net. A domain specifies a number of 
molecules. There is a constructor for a domain 
specifying its size and its placement in the mole-
cule structure. An address is a number depicting a 
molecule and the domain constructor.

The constructor must be able to specify overlap-
ping domains of the same size or any size in order 
not to place restrictions on the graph. Performance 
is dependent on the size and placement of a do-
main. It is heavily influenced by the communication 
structure.

The challenge is to design the domain constructor.

Key issues: addressing, synchronization, critical 
region, performance

Partitioning
Traditional computers may have ports and proces-
sors implemented in separate subsystems. Special 

purpose protocols are used to maintain a system 
structure and the intermodule communication. Tra-
ditionally, such communication may be: on low level 
I2C busses, device specific like SCSI, and system 
general as ethernet.

rp8601 uses a molecular approach. The application 
is an expression being loaded. The computer may 
be divided into a number of separate clusters each 
containing a number of molecules. With some 
mechanism parts of the expressions are allocated 
to clusters. By using the domain mechanism the 
the communication works.

In the long run this may be a method to integrate 
computers to ONE system. Communication is by 
expressions instead of awkward protocols. How-
ever high level intersystem communication protocol 
must still exists - they are the applications.

Some applications are rather stiff and controlled. 
Others are more lose where subsystems may be 
separated, i e lose communication. Such systems 
may be started again and reconnected.

rp8601 allows such disconnection, of course with a 
delay of pending expressions. However, there is a 
more fundamental issue to be solved: time. When 
systems are separated they loose time synchroni-
zation. Time elapses with different speed in the 
subsystems. When reconnected they have different 
time. It is not understood how to handle this.

Key issues: distributed computing, protocol, time, 
real systems

Graph reduction
Graph reduction is straight forward to implement in 
a single processor. Using many processors com-
plexity increases. The problem to solve is address-
ing, critical regions and synchronization.

rp8601 solves this by letting each vertex be a sepa-
rate process. There are two rewrite operations: one 
for just the vertex and another for the net pointing 
to the vertex. The first one is simply like a tradi-
tional instruction. The challenge is to design the net 
rewrite.

rp8601 uses the H protocol in the domain of a net. 
The protocol publishes equivalence rules. They 
may be performed any time and several times.

Key issue: applicative, synchronization, critical re-
gion

Real time - behavior
Traditional computers don't know about time. A 
special register giving a date may be used. Behav-
ior is implemented by synchronization messages. 
In small single processors this may be sufficient, 
but for distributed and large machines problems 

3



arise. The arrival order of message may cause rac-
ing problems and in-determinant results.

The challenge is to make real-time first class. In 
order to do this the mechanism of a port and the 
basic (boot) execution mechanism has to be given 
a theoretical model. In the rp8601 case an applica-
tive model. As I understand this has never been 
done before!

In order to be first class real-time behavior must 
fulfill a number of properties: storable, readable, 
referable, be operated, recorded and play backed.  
When recorded or  play backed it may involve 
ports. Behavior may be either a structure of trans-
actions or the corresponding with absolute or rela-
tive time stamps. Ports must be synchronized.

The rp8601 models a behavior by a data structure. 
As such all types of first class operations may be 
performed on it. Clock is a global feature. Absolute 
time occurs synchronized in all molecules. The port 
mechanism is a behavior simultaneously recording 
and performing play back.

Key issues: first class, port, synchronization, proto-
col, theoretical model

Parallel modules, boot and I/O
In a traditional computer the boot mechanism is 
arbitrary. Starting a system with many or a vast 
amount of processors is feasible. However when 
starting at different time communication protocols 
have to perform a synchronized start. Using a vast 
amount of molecular processors a more delicate 
mechanism is needed.

The challenge is to understand what computing is 
in the regards of ports and internal execution.

rp8601 solves this in a very different way. First, 
modules are expressions (data structures) being 
fixed or behaviors. Modules communicate by unify-
ing parts of such expressions . Ports are behaviors. 
Input/output is performed by unifying an internal 
behavior with the port behavior!

Booting is performed by emitting an expression into 
the computer. Several such expression may be 
emitted at any time. Thus booting may be per-
formed for subsystems using different ports. A 
read-only memory may emit such a structure when 
started.

The mechanism is applicative.

Key issues: synchronization, port, booting, commu-
nication, applicative

Executing memory
A traditional von Neumann computer like x86 (not 
rp8601) has a memory and a processor. Both are 

separated, however a cash memory may be in-
cluded in the processor package. The interface is  
a protocol performing read and write of memory 
locations. The processor has very little structure 
except for some registers. It could be considered a 
heap of gates.

The basis for rp8601 is a molecular approach. Of 
course, it is not feasible to have one physical proc-
essor in each memory cell, but memory cells may 
be multiplexed by a processor. This mimics a 
memory cell having a virtual processing capacity.

Graph reduction is generally not numerics. Instead 
it is based on pattern matching. As such a com-
pletely different electrical implementation could be 
used. It is based on transportation and associative 
comparisons in the memory, data-path and the con-
trol module. The challenge is to design such a 
processor.

The  H processor implements one minute domain.

Key issues: processor, control, circuit

Complete approach
In traditional computers there is an instruction set 
architecture. The architecture has no formal 
mathematical model. Thus any type of execution 
may be performed. This results in a flexibility. It can 
be used for any type of maintenance or implemen-
tation of tools etc. An example is a debugger.

Graph reduction implements an application being 
applicative. On the lowest level the implementation 
uses an "instruction"-level language. It could be a 
traditional instruction set architecture or an applica-
tive language. If an applicative language is used 
there must be means to implement the mentioned 
maintenance and tools.

The challenge is to design an application machine 
level language fulfilling these requirements.

The rp8601 uses the H language being a single 
level approach.

Key issues:  machine language, low level control

Representation
I am watching a person performing the “real” steps 
of throwing a dice every 3rd second with the result 
4, 6, and 2. On a paper I write “ throwing a dice 
every 3rd second with the result 4, 6, and 2”.

The first one is a real behavior and the second one 
a representation for this course of events. Instead 
of using plain text other more strict forms may be 
used.

Another example is “5+3”. Written on a paper it is 3 
tokens. Written in a computer language it repre-
sents the constant 8. But if I use an editor and want 
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to change it to “5+4”, the text stands for 8, how do I 
proceed?

The new concept of “representation” is defined: 
there is the duality item and representation of item. 
By making a derepr of a representation an in-
stance is created. Thus derepr “5+3” results in 5+3 
and subsequently in 8. The repr goes the other 
way but is tricky, there are an infinite number of 
ways to express 8.

A simplified version of this is the Quote mechanism 
in Lisp. Modern languages don’t have the concept. 
Functional languages use high-order functions to 
alter the semantics of a function, but this is not at 
all the same.

The introduction of representation gives a new un-
derstanding of symbols, function application, mod-
ule instantiation, version handling etc. It also en-
ables a mathematical understanding of execution, 
debugging and tracing.

Key issues:language, representation 

Behavior
Parallelism, the process concept and communica-
tion are all part of the same issue. The understand-
ing of them is inherited from the sequential form of 
earlier languages. They are just other forms of do-
ing assign (:=).

A new concept “course of events” (sv = händel-
seförlopp) is defined. Here are some examples:

1. a movie 51 minute long

2. throwing a a dice every 3rd second with the 
result 4, 6, and 2.

Both could be modeled. They can be stored, cop-
ied, and read. They can be performed any number 
of times. They could be analyzed, a part may be 
extracted, run stepwise, different speed, forward 
and backward. They are first class!

In the second case the outcome may be another 
course of events

3. throwing a a dice every 3rd second with the 
result 1, 4, and 3.

A new concept “behavior” is defined. It is a set of 
course of events. This set should be considered all 
course of events for a particular process. Thus 
“throwing a dice 3 times every 3rd second” has the 
outcome of 63 number of course of events. Another 
behavior would be when the delay between the 
throws is within the interval 0…10s.

The behavior concept described is a “natural one”. 
A mathematical one used in computing consists of 

other concepts also being behaviors. Thus a com-
putational behavior is the cross product of

★ abstractions
★ symbols
★ modules
★ executions
★ resources

Each as to be explain further. Below the word 
“item” is used for what is described. An item may 
be a course of events or a behavior.

Abstraction
This is the top down method to construct. Generally 
it includes the use of modules for the decomposi-
tion, and basic symbols for depicting items. Sym-
bols is used to form relations being equalities. In 
classical languages this is the intention of a func-
tion body. As such it may evolve by time, i e being a 
course of events! 

Symbols
This is a syntactic element. Hardware, global ad-
dress, name, character etc are examples. They 
have an appearance but only depict a particular 
“knowledge”. A more complicated one is the lan-
guage used. As such it may evolve by time, i e be-
ing a course of events.

Modules
This a “component”. Several such are fitted to-
gether. Generally parameters are used to define 
them. In almost all computer languages equality is 
used to fit them together, however implemented in 
different ways (argument, variable, element of 
message etc). The components may evolve, i e 
being a course of events.

Resources
This is the “physical” part of an implementation. 
The part is an item or generally a set of items. As 
such they could be physical parts as harbors, ves-
sels etc as processors and memory cells.

Execution
This is the procedure to make an instance of an 
item using resources. As such it includes the bind-
ing of values to memory cells, ports and the rewrite 
process (order and allocation in time) to change the 
values of memory cells. Or as in the example 
above bind cargo to vessels and harbors.

Key issues: time, behavior, protocol

Indeterminism
I am using a calculator pressing 5 + 3 = and the 
response is 8 as it should. Then calculator contin-
ues to return 8 every time I repeat the sequence. 
Now assume that there is an error in the calculator. 
It returns arbitrary result each time. The first exam-
ple is a deterministic and the second one a nonde-
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terministic behavior. This is the established 
mathematical understanding.

Assume now that we have a real time computer 
system. Two experiments are done with the same 
history. In both cases exactly the same input is 
used by the computer. A computer is an extremely 
large finite state machine. Thus it produces the 
same result in both cases. Now assuming that arbi-
trary but equal input is used. The results would be 
the same. The result is deterministic!

On the other hand, if we record the input to the sys-
tem, even if the history is the same, generally the 
next input is variable, thus the input from real world 
is nondeterministic!

The input to the computer is read by a device with 
somewhat uncertainty (jittering) in time. Thus two 
identical input sequences may not produce the 
same result from the input device. The input is 
nondeterministic. The output from the computer 
may therefore be nondeterministic.

As a designer of a real time system I want the 
same result from the same input, i e deterministic.

The general opinion in the computer community is 
that real time systems are nondeterministic and 
should so be! The reason behind this is probably 
that the implementation is constructed by message 
passing! My understanding is different.

Using a large asynchronous multiprocessor using 
message passing technique may cause message 
arrival order to be nondeterministic. The system 
may therefore behave nondeterministically.

In order to produce deterministic results the mes-
sage passing semantics have to be redesigned or 
replaced by other mechanisms.

Using a perfect method in a large system would 
cause the system to be stiff. Because of design 
flaws, machine errors, overload situations the out-
put cannot be guaranteed. In such cases nonde-
terminism may be a design goal!

Key issues: process, communication

OVERVIEW
A guided tour within the rp8601 is in this section. 
The explanations are sketchy and simplified in or-
der to make the description more comprehensive.

Process concept
Ports are for input and output. The port has an out-
side being the real world and an inside being a data 
structure. The general idea behind the rp8601 port 
is that the internal data structure should be a model 

of the real world behavior regardless of being an 
input or output port.

The internal data 
structure is a 
course of events. 
Beside an exam-
ple is shown. It 
consists of a list 
tagged seq and a 
number of time 
stamps (t123.3 
etc) separating the 
values (56 etc) on the real world side.

seq[t123.3 56 t127.2 23 t129.4]

There is a system process (behavior) that is the 
boot mechanism, see figure below:

unify[
 apply[
  par[adi1 ado2]]
 bootstrap]

The boot is a unification between the ports and the 
bootstrap. The ports are described by the symbols 
(hardware addresses adi1 and ado2 depicting the 
ports). The standard list in rp8601 is tagged par. 
Here the list is considered a representation for the 
ports.

The apply-construct transforms the representation 
into the port internal course of events.

unify[
 par[in1 out2]
 bootstrap]

The unification between the boot strap and the port 
behavior causes the binding of the internal behav-
ior of the bootstrap to the in- and outports.

As an example the bootstrap process could further 
be divided into 3 processes (components) as 
shown below:

seq[ t1
v1
t2
v2

…]

seq[ t1
v1
t2
v2

…]

adi1 ado2

system

seq[ t1
v1
t2
v2

…]

seq[ t1
v1
t2
v2

…]

adi1 ado2

system

process

6



The lines (nets) are behaviors local to the bootstrap 
process. They are somewhat the same as variables 
in normal languages and nets in hardware descrip-
tion languages. Each of these nets are bound with 
unification to the local processes. The local com-
ponents are relations between their behaviors con-
nected to their interface.

All these behaviors (excluding the input output) are 
deterministic. The concept of unification, i e equal-
ity, makes the total structure deterministic.

In a unification of two expressions one could be 
bound to a value and the other not. The equality 
forces the unbound to the value of the bound one. 
Thus there is a flow of value from the bound to the 
unbound. This mechanism causes the flow of val-
ues from input towards the output and eventually to 
the output port data structure.

The bootstrap module concept is the same as the 
internal module concept, thus making the module 
concept orthogonal throughout the system.

Generators
Generators are modules used to create predefined 
representation for behaviors. It is a module having 
a hidden internal structure and an external being its 
interface. Generators corresponds to parameter-
ised components in hardware description lan-
guages and procedures in logic language. A distant 
relative in the process algebras are processes.

In this section some few toy like generators are 
used to show the concept. The earlier discussed 
bootstrap is described. Generally the behavior con-
sists of two elements where the first is the input 
and the last the output.

Constant
Assume that the input port has one and only one 
course of events. The output port the correspond-
ing. This is a toy behavior of no use:

par[
 seq[t123.3 56 t127.2 23 t129.4]
 seq[t123.3 48 t127.2 56 t129.4]]

seq[ t1
v1
t2
v2

…]

seq[ t1
v1
t2
v2

…]

adi1 ado2

system

process

process

It is not known what happens when input differs 
from the sequence.

Alternatives
Assume that two such toy course of events exists. 
They are described using an alt-structure contain-
ing the two toy course of events.

alt[
 par[
  seq[t123.3 56 t127.2 23 t129.4]
  seq[t123.3 48 t127.2 56 t129.4]]
 par[
  seq[t123.3 33 t127.2 24 t129.4]
  seq[t123.3 48 t127.2 33 t129.4]]

The unification of the bootstrap distributes the unifi-
cation to each of the course of events. Assume that 
the input is the same as in the earlier example 
(constant). Among the two alternatives the second 
differ from the input. It is pruned from the alterna-
tives and only the first course of events remains.

Any
The last example with two course of events is 
turned into two behaviors. The first received value 
56 is replaced by a predefined behavior any. It 
stands for all possible course of events. It could be 
considered a wild card.

alt[
 par[
  seq[t123.3 any t127.2 23 t129.4]
  seq[t123.3 48 t127.2 56 t129.4]]
 par[
  seq[t123.3 any t127.2 24 t129.4]
  seq[t123.3 48 t127.2 33 t129.4]]]

In this case the input time sequence must have the 
timing shown. The first value received could be any 
value. The second value must be either 23 or 24, 
selecting 56 or 33 as output.

Symbol
The earlier bootstrap is somewhat changed. The 
input value should be transported to the output by a 
symbol. the symbol describes one behavior:

def[
 par[
  seq[t123.3 S t127.2 any t129.4]
  seq[t123.3 48 t127.2 S t129.4]]
 S=any]

A def-construct is a placeholders for values. The 
first element is the proper behavior being the result 
of the construct. The remaining elements are val-
ues to be referred. In this case the S=any-behavior. 
The S= is just a way to tell the reader that this is 
the S element.

In this case the proper values are the earlier input-
output behavior modified by a wildcard any in the 
last interval. In the input behavior the first value 
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uses a symbol S. The second value in the output 
behavior uses the same symbol S.

During execution the input binds S by unification of 
the input value and any resulting in S=input value. 
Later on the output uses this symbol for output.

If the timing sequence is fulfilled all values from the 
first input interval is transferred to the output in the 
second interval.

Copies
In the earlier example S was used a some sort of 
variable. Constants can be used in the same way. 
The earlier example is modifier with the symbol T:

def[
 par[
  seq[ T S t127.2 any t129.4]
  seq[ T 48 t127.2 S t129.4]]
 S=any
 T= t123.3]

The value t123.3 is shared. This is an important 
feature for representations. Symbols are the only 
way to specify sharing. Thus all shared structures 
are in the def-structure.

Representation
In the earlier example the concept of representation 
has been ignored. Below a component and three 
nets are used. The component consists of a def’-
tree structure. The nets by a par-list.

unify[
 par[any 1 2]
 apply[
  def'[
   par[sel'[2] sel'[2] any’]
   any']]]

The apply-construct (as a unary operator ) trans-
forms the the representation to its behavior. 

The def’-structure is a representation. When trans-
formed it becomes a def-structure, the ‘ differs. Its 
first element is the behavior proper being a par-
structure with two sel’-elements and one any’ ele-
ment. They are transformed to sel and any respec-
tively. The par-construct is identical in the repre-
sentation.

Links are not possible to have i the representation. 
Instead sel-elements are used. It selects an ad-
dressed element in the surrounding def-structure. 
The address is a tree-index allowing the access of 
an element far down in a tree structure.

Thus the rewritten example is:

unify[
 par[any 1 2]
 def[
  par[S S any]
  S=any]]]

In some steps it will be rewritten to:

par[1 1 2]

Function application
Function application is such a general concept that 
it must have full support. The function application is 
implemented by the non-unary apply-construct.

An example from extended lambda calculus where 
two numbers 1 and 2 are summed in an embedded 
expression is:

λ($1, $2).($1+$2) (1, 2)

The same expression is expressed as follows:

apply[
 def’[
  apply’[+’ sel’[2] sel’[3]]
  any’
  any’]
 1 2]

Functions have no restrictions on formal arguments 
as described by the any’-elements. Thus a shortcut 
is performed:

 def[
  apply[+ sel[2] sel[3]]
  1
  2]

The function is transformed from representation. 
The operator symbol +’ has been converted to an 
instruction. In the def-construct the actual argu-
ments are placed after the proper element.

In the next two steps the sel-elements selects the 
actual arguments 1 and 2.

def[
  apply[+ 1 2]
  1
  2]

During the next step the function application is per-
formed:

def[ 3 1 2]

The entire def-construct is canonical. The result is 
the proper element:

3

Logical structure
The execution mechanism could be modeled in an 
abstract logic model described here. The expres-
sions used in the examples are compound expres-
sions delimited by parenthesis:

unify[5, expr, a]

This structure could not be stored in a memory cell. 
Instead a number of global symbols, here depicted 
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identifiers are used. A definition of the expression 
for the identifier is placed in each memory cell. It is 
a function depicted closure.

id1, id2, …, idn
id2=unify[5, idexpr, sel(na)] @(envdefa, tags)

By using the identifiers an arbitrary non circular 
graph may be constructed. The elements to the left 
of @ corresponds directly to the elements of the 
expression above. To the right of @ there is some-
times a reference to a def-construct. A number of 
tags specifies how the closure should be rewritten.

There are some important variants:

id2=unify[5, idexpr, sel(na)] @(envdefa, tags)
id2=unify[5, idexpr, sel(na)] @(envdefa, garb)
id2=@(free)

The first one is the general one used. The second 
one is tagged to be tested whether it is garbage. 
The last one is an unused memory cell.

Execution is by rewriting expressions. They form a 
number of trees. Any closure may be rewritten. 
Some would not cause a change. Memory cells are 
tagged to indicate if to be rewritten, waiting for re-
sult and how far to be rewritten. Only pending ex-
pressions are rewritten.

In a gross view an expression tree is followed from 
root to leaves. In some case in a pre-traversal or-
der. Signaling up or down in the tree is performed 
by rewriting identifiers id. Generally, identical iden-
tifiers are rewritten in one step.

Garbage collection is performed by rewriting the 
garb tagged expressions. Those not referred by 
another expression are turned into free cells.

Multiprocessor
The logic structure is implemented in a multiproc-
essor. It consists of a communication network, 
ports and reduction processors. The individual units 
have a hardware address.

Each reduction processor contains a number of 
memory cells, one larger cell able to store a two 
level expression and some network cells.

The core unit contains the larger memory cell. A 
numeric arithmetic unit is connected to this cell. 
Within the large memory cell values of single ele-
ments could be permuted.

There are some channel units performing commu-
nication through the communication network. The 
channel unit contains one network memory cell. It 
can store one closure.

Execution is performed either by a network cell or a 
core cell. All rewriting is performed by inspecting a 
closure. Therefore a global intra-processor rewrit-

ing is performed by distributing a particular closure 
to those processors involved.

Rewriting is of two types:

• an identifier is rewritten. In parallel all fields in 
all closures within the local memory is rewrit-
ten. By a search mechanism only involved 
elements are changed.

• a closure is rewritten. Depending on the ex-
pression one or two levels are used. If two, the 
other son expressions are read. Rewritings is 
by permutation of elements and setting tags.

Rewrite rules are implemented in a set of gates.

communication network

rules
generators

memory

arithmetic

core

reduction processor

channel

ad

id

clockport

ad

Time synchronism
Ports time stamp values and control output by time. 
Clocks in all ports are synchronized to sub-
microsecond level.

Each separate chip has one phase locked clock. 
Phase-locking is performed using the communica-
tion in the communication network.

Chip architecture
There was an implementation under design. Expe-
rience from that design showed that the main foot-
print should be altered. This change is shown here. 
The early design read out a full closure. The new 
one reads the closure elements in sequence.

512 closures of 4+2+1 word
64 bit

co
nt

ro
l a

nd
 a

rit
hm

et
ic

channel

core bit 1-36

bit 37-72
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The main part of the chip is memory. The shown 
memory consists of 8 banks of memory cells. Half 
of the bits are read/written on one edge, the re-
maining on the opposite edge. The memory is as-
sociative and uses the element as search key.

The core unit and the channel units are place along 
the other side.

THE H LANGUAGE
 The language of the rp8601 is “H”. There are sev-
eral H languages, all being the same but expressed 
differently:

• the Hmachine language consists of a number of 
lists and scalars. Lists are interconnected by 
links. Scalars can only be found within lists.

• the Habs is language corresponding to Hmachine 
where linked expressions are placed inline. 
Habs may also be just a scalar. Sharing an ex-
pression is expressed by a local symbol refer-
ring a definition. This is only a syntactic way to 
express links. The definition of the shared ob-
ject is (any order may be used and scope is 
not defined):

 exp : symbol

There are sugared variants. They are not dis-
cussed here. The Habs is used here because it is 
the only language that can be written in text.

The H language has a mapping onto real world 
properties or traits. When written as a syntactic 
concept it has just an existence, but when executed 
in a machine the relation to the real world is used. 
Some of the mechanism can only be understood 
with the knowledge of a machine. They are not dis-
cussed in this section but in subsequent sections. 
Essentially these mechanisms are not unique for 
rp8601, but are general concepts of all computing 
paradigms.

The H language is an applicative language. It has a 
semantics enabling the control of almost all what is 
necessary in administrating a system - without hav-
ing side effects!

The H language is both data and program - all with 
the same syntax. There is no difference between 
data and program. Thus there is only one syntactic 
form.

The H language semantics is not defined by the 
methods used for classic, functional or other lan-
guages. The syntactic form is all. Other languages 
has some side-effects both in their semantics and 
syntax.

The semantics is here expressed by equivalence 
rules. They take one syntactic form and describes it 
to be equivalent to another form. The syntactic form 
is here depicted expression.

A reduction is the property of a machine using the 
H language. It assumes a direction of the equiva-
lence. The machine performs graph reduction by 
replacing an expression by another expression. In 
the equivalence rules presented further down the 
left expression is rewritten to the right expression.

H syntax
Below the complete syntax of Habs is shown. There 
are token, scalar and list forms.

A token is shown as one bold text.

A scalar is shown as a text scalar(v) with paren-
thesis containing an argument v. It stands for a 
numeric value where n indicates an integer and r a 
real value.

A list is shown as a text list[…] followed by a list. If 
the list is specified “e1 … en” it could have any 
number of elements. “e1 e2 … en” has at least one 
element. Otherwise it stands for a fixed number 
specified by the symbols.

delta
epsilon
token
 token = some’, something’, empty’,
  nothing’, any’

int (n)
cyc (n)
real (r)
cycfix (r)

symb[ n ]
phys[ n ]

type [ e1 … en ]
 type = par, seq, symb’, phys’, part’, bag’,
   alt’, pri’, if’, unify’, def’, sel’,  apply’,
  repr’, red’, alloc’, net’, time’
part[ e1 … en ]
some
something
empty

bag[ e1 … en ]1
alt[ e1 … en ] 
pri[ e1 … en ]
if[ e1 … en ]
unify[ e1 … en ]
nothing
any

def[ e e1 … en ]
sel[ i1 i2 … in ]
sel[ e i1 i2 … in ]

10
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apply[ e1 ] 
apply[ e1 e2 … en ]
repr[ e1 ]

red[ e1 e2 … en ]
error

alloc[ e ad tf tt ]
alloc[ e ad tf ]
alloc[ e ad ]
alloc[ e ]

net[ id ad ]

time[ T, accnom, accach ]

The Hmachine language have additional syntactic 
constructs. They are the general ones recoded and 
packed into a single scalar:

sel[ i1 i2 … in ]
phys[ e1 ]
ID[ e1 ]   -- the Habs link

The list variants also have a tag that represents the 
state of reduction. It will not be defined here. There 
are two for a user very important ones - breadth 
and depth used in scheduling.

Numerics
In conventional computers there was first integer 
and then floating point. Computer languages have 
been influenced by this and implement these two 
numeric types. However working with real-time, 
physical space and sets there is more to be asked 
for. Thus the H-language has more numeric types.

Integer and reals are used and implemented as in 
conventional computers.

Cyclic numbers
Some real world properties are cyclic as angles. 
Another is infinite spaces. Time is a good example. 
Time could be viewed as being a number in the 
range minus to plus infinity and having infinite pre-
cision. When time is 23:59 on the day and you add 
2 minutes it is 00:01 in a cyclic number system with 
the length of 24:00.

Assume that there is an infinite range of N. A new 
number Ncyc is defined as:

Ncyc = N mod lcyc

used to depict a value in N. The representation is 
ambiguous, there are infinite amount of values in N 
corresponding to Ncyc. However when using this 
representation the user “knows” which one being 
proper. There are operations on this cyclic type:

• difference gives a normal number. Cyclic plus 
or minus a normal number gives a cyclic. 
Comparing two cyclic is possible if difference is 
less than lcyc/2.

A cyclic integer is obvious. Compared to a conven-
tional integer it is overflow and the most significant 
bit that must be handled different. Compares must 
handle the first bit different.

A cyclic real must be considered different from 
floating point. The exponent should be considered 
fixed. Thus the real corresponds to an integer with 
the scale 2exp. Difference is performed by alignment 
to the smallest exponent and with normalization. In 
the add-operation alignment is to the cyclic number 
(not to the one with largest exponent as in floating 
point) and there is no normalization.

The length of the cycle lcyc could be handle in pow-
ers of 2. It is possible to go from one cyclic space 
to another. Therefore the exponent may be 
changed arbitrarily together with a corresponding 
shift with 2-∆exp of the mantissa. When increasing 
the exponent an “earlier” value with the new expo-
nent is used as normal. Its least significant bits are 
set in the mantissa. The application “knows” that 
the operation is correct.

Built-in ranges
The machine performs operations on sets when 
rewriting unify numerics. Range operations are 
common in pattern matching. Therefore the numer-
ics are appearing in three sets

≤ n:  …n
= n:  n
≥ n:  n…

The middle one is the common numeric one. The 
other two are sets. The result of a unification is ob-
vious except for the one defining a range, however 
being canonical.

Lists
There are typed lists. The use of different lists is an 
implementation necessary to separate constructors 
in the application domain from Habs syntactic ele-
ments. The general list structure has type par. seq 
is part of the process concept and is used to differ it 
from par.

The list consists either of the elements specified, or 
by a part construct. The latter could be considered 
an open list representing zero or more elements. 
The part construct partitions a typed list into a hier-
archical set of partitions:

par[
 e1
 part[
  e2
  part[e3 e4]
  part[e5]]
 part[]
 e6]
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The construct is needed to implement lists. A part 
containing no elements is equivalent with the token 
empty. The token empty in a list could be dropped. 
A coloured empty token point to be used in array 
arithmetic with infinite spaces has also been con-
sidered.

Parts of lists may be shared.

The part construct also facilitates implementation of 
generators altering the amount of elements in lists, 
especially where large or unknown amount of ele-
ments are used. Tail recursion is eliminated.

Bags and alternatives
Mathematical theory have sets and bags. Elements 
in sets are unique. Elements in bags may be identi-
cal. The rp8601 bag construct is something be-
tween: it contains elements and it is not known 
whether they are unique. Identical elements placed 
in the bag is not guaranteed to be separated. It is 
the use of the bag construct that defines whether it 
is a true mathematical bag or not.

The bag construct is particularly used when pruning 
alternatives in unification. In this case the mathe-
matical bag semantics is not guaranteed.

Bags are built analogous to lists. Element order in a 
bag has no meaning. Corresponding to part the alt 
construct is used. nothing stands for an alt con-
struct being empty. In a bag or alt construct the 
nothing token can be dropped.

bag-constructs may be shared, but not alt con-
structs.

In many constructs the alt and pri construct may 
be expanded outside the construct e g:

par[ e1 alt[ e2 e3 ] e4]

is equivalent to

alt[ 
 par[ e1 e2 e4 ]
 par[ e1 e3 e4 ]

Condition
Conditions are special cases to handle alternatives. 
The pri construct orders alternatives. The construct 
contains an ordered list of alternatives. The con-
struct equals the first one not being nothing.

The if construct is a list of expressions. It could be 
considered a guarded expression. If some expres-
sion is nothing the construct equals nothing oth-
erwise the first expression.

The combination of pri and if constructs forms a 
conditional expression:

pri[
 if[ e1 c11 … ]

 if[ e2 c21 … ]
 …
 if[ en cn1 … ]]

Sharing and constraints
Graphs are directed constructs. Graphs are formed 
by constructing (= referencing, see below) using 
already defined graphs e2 … en. No loops are pos-
sible. Lists form an hierarchical construct. They 
don’t allow sharing.

Constraints are conditions defining when an ex-
pression is valid. The def-construct is used to im-
plement sharing and constraints:

def[ e1 e2 … en ]

is considered to be a typed list with special proper-
ties. If the typed list exists, it is the equivalent to e1. 
The typed list is said to be the environment to all 
sub-expressions of the typed list. When referenced 
all elements e1 e2 … en are present.

The sel construct selects another sub-expression 
using indexes i1 i2 … in, each being an integer, us-
ing the environment env:

sel[ i1 i2 … in ] @env

which is equivalent to

sel[ env i1 i2 … in ]

The first index should be greater than 1 in order not 
to refer to the first expression. The current under-
standing here is not clear.

Representation
In classic programming there are data and pro-
gram. In H they are the same. However the mode 
of an expression is either the text or the mathe-
matical interpretation. In some applicative lan-
guages there is a Quote function. It is related to 
representation.

In H there are two forms: the representation and 
expression forms. Both are expressions. A repre-
sentation form may be the result of an expression. 
An expression form is the result of an appl (-ica-
tion) construct:

apply[ e1 ]

is recursively applied to all subexpressions of e1. 
Any subexpression not yet evaluated is evaluated 
before the application.

Almost all syntactic elements have equivalence 
rules used in reductions. In order not to perform 
such a reduction, an element has a dual corre-
spondence. Thus unify has the representation form 
unify’. The corresponding holds for their simplified 
forms as any and any’. The simplest scalars and 
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typed lists do not have dual forms. They are the 
same in both forms.

High order forms of representation is protected by a 
repr construct. An application of such a construct 
returns the protected expression. By cascading 
repr constructs, any high order mechanism may be 
constructed.

The high order forms allow high order forms to be 
“compiled” by a compilation function. This type of 
functionality could not be expressed in normal ap-
plicative languages. High order functions are cur-
rently not available in logic languages or process 
algebras. This is due to the currently used high or-
der function mechanism. The representation in H is 
a more general mechanism.

The “functional application” is a special form of the 
application using several expressions. The first ex-
pression e1 is of representation form and the other 
expressions are actual arguments as shown earlier:

apply[ e1 e2 … en ]

is equivalent to

def[
 apply[ e1 ]
 e2
 …
 en]

It is very simple to rewrite. The apply[ e1 ] creates 
an instance of e1. Subsequently necessary sel 
constructs access the environment in which the 
actual arguments are present.

Special generators
All canonical expressions are an alt construct of 
expressions. It contains all expressions of the H 
language. When counting expressions it counts to 
1. The token any stands for any such expression.

One of those expressions is something. The con-
tents is hidden. some (plural) stands for a part 
construct with at least one something.

Unification
Unification is an arithmetic operation. In other lan-
guages it is generally a binding of a symbol to an 
expressions. The definition of H is in the other di-
rection, it expresses a vast number of alternative 
expressions where only some are possible. Those 
possible have proper values for the symbols. The 
unification evaluates an equality construct, either it 
results in a proper expression or it prunes the alter-
native in charge.

An implementation of the symbol arithmetic uses 
the unification to bind symbols! The complexity 
comes there.

Unification is simple. If several expressions in-
cluded are identical, the result is such an expres-
sion otherwise nothing.

Error
In computing there may be hardware errors. In or-
der to cope with this the machine language, not 
Habs, has an additional equivalence rule:

e1 = e2

That is: any expression e1 is equivalent to any ex-
pression e2. Hence the machine is assumed to per-
form random reduction. To this is added: with low 
frequency. This is definitively not applicative com-
puting. This is the way hardware errors work.

error is a scalar token and red (-undancy) is a 
construct being an ordered list of expressions. The 
overall view of its use is that error propagates up-
wards in expressions reaching eventually a red 
construct where it is stopped. It is removed from 
the red construct. The red construct is equivalent to 
its first expression. Several red constructs may be 
included in an expression at various places.

Beware of the use of this mechanism. It is danger-
ous, however probably one of the few ways to cope 
with errors. Its use could be visualized:

An expression contains subexpressions ran-
domly altering to new ones. The “new” expres-
sions are from user point acceptable but may 
be different.

A good example of its use: two expressions a and b 
in a red construct are stored in different physical 
memories and sharing the same expression er. An 
alloc construct, see further down, places an ex-
pression in a physical location:

def[
 red[
a:  alloc[ er ad1 ]
b:  alloc[ er ad2 ]]
 er : exp ]

Symbols and machine symbols
Symbols are different from symbols in other com-
puter languages. They should not be mixed-up.

Assume there are some unique properties. Some 
could be expressed as data structures others are 
real world traits. Examples are “that car”, “the char-
acter L” etc. In the real world they just exist. In un-
derstanding the property there may be some de-
scription exps or none!

The H language has a representation form being:

symb’[ exps ]
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The exps expression may be empty. There is a cor-
responding expression form:

symb[ ]

It is used in the following way: Some representation 
form (e g a program) has an internal expression 
being symb’. Performing apply on this structure 
creates a symb construct. Its only purpose is to be 
a placeholder for something not known. Using the 
the same symb’[ exps ] constructs at different posi-
tion creates different placeholders, hence they are 
considered different when comparing.

A created symb construct could be referenced from 
several expressions. They can also be compared.

Physical address
There is a special case of symbols, the machine 
symbols, here denoted phys. These symbols map 
onto hardware items of the actual physical ma-
chine. The difference with a symbol is that the exps 
of the phys is known by the machine. Such sym-
bols are used for “instruction code”, “port address” 
etc.

The semantical understanding is: when building the 
hardware the symbol was created. The symbol is 
carried by the phys construct to the machine.

Internal symbols
The H language does not have symbols. Instead it 
uses sel constructs to select particular expressions 
from an environment. This selection mechanism is 
equivalent to an internal symbol.

Some expressions of an environment are the token 
any. At this point it acts as a generator for an arbi-
trary H expression.

Semantics
A graph in a machine defines an expression P. Let 
each symbol be assigned an expression. The 
equivalence rules expands this expression to PE. 
In some cases PE may be empty. Now let each 
symbol have all arbitrary expressions of H. The 
cross products of these expressions generates a 
set PES. Most symbol expression combinations do 
not generate expressions. The remaining expres-
sions of PES define the expressions in a symbol 
combination.

Symbol arithmetic
In functional applications symbols are placeholders 
bound to an expression. In logic applications there 
are a relation between symbols. These relations 
causes constraints on symbols. Arithmetic on sym-
bols is to solve these constraints.

isym used below is included for the explanation, 
but is not part of the H language.

The graph consists of an arbitrary directed graph. It 
uses an arbitrary amount of def constructs to spec-
ify shared data structures, each being an isym 
construct. They are referred to by sel constructs. 
The references could be part of unify constructs.

Together the isym, sel and unify constructs form 
an equation system to solve. The solution may re-
sult in several alternative graphs. Thus the symbols 
are constrained. The complexity of the solving 
mechanism could be drafted in the levels:

1. all referred sharing points are bound to ca-
nonical expressions. This is the functional 
case. There is no additional symbol arithmetic.

2. at each sharing point there is at most a ca-
nonical expression bound to a symbol. This 
case corresponds to “equalities between sev-
eral symbols” assigned to one expression.

3. as 2 but there are several unifications contain-
ing a symbol and canonical expressions. The 
unifications can always be reduced to a ca-
nonical expression.

4. as 3 but there are a set of alternative solutions 
each needing separate reductions.

5. other

The H language could express all four. The ma-
chine must have more built in rules when using 
more complex solutions. The current approach is to 
solve the first 2 complexities.

A sketch of arithmetic type 2
An isym construct can have these forms:

1. isym[]
2. isym[ ecan ]
3. isym[ ecan,1 … ecan,N ]
4. isym[ s2 ]
5. isym[ s2 ecan]
6. isym[ e(s2)]

In the first (1.) variant the symbol is not bound. If 
this is the final solution it is equivalent to any. In the 
second example the symbol is bound to the ex-
pression ecan being canonical. The third variant can 
be further reduced. The isym construct is here 
equivalent to a unify construct. If it rewrites to 
nothing the isym expression equals nothing and it 
is further propagated in the graph.

The fourth (4.) case contains a reference to another 
symbol. It states that the current symbol is equiva-
lent to s1. The situation is as follows:

s1:  isym[ s2 ]
s2:  isym[ e ]

Two symbols are identical. In this case one of them 
should refer to the other. Using several symbols 

14



referring to each other may cause loops. Symbols 
are ordered in H. Symbols may refer to symbols 
before. If s2 < s1 the referred order is correct. If s2 = 
s1 the s2 should be dropped. Otherwise referencing 
should be swapped:

s1:  isym[ ]
s2:  isym[ s1 e ]

The fifth (5.) case is the same as above. If s2 < s1 

the symbols should be swapped as above. Other-
wise the expression e should be moved:

s1:  isym[ e ]
s2:  isym[ s1 ]

The sixth (6.) example contains an expression with 
a subexpression being a symbol s2. In order not to 
form a loop it must refer to a symbol before. It does 
not involve additional symbol arithmetic.

A sketch of arithmetic type 3
Assume that there is a definition containing one 
symbol involved in a unification:

s1: isym[ e1 ]
unify[ s1 e2 ]

All such constructs are lifted from the expressions 
into the symbols. The remaining part may have 
other constructs causing the binding of a symbol 
(not shown):

s1: isym[ e1 unify[ e2 ]]
s1

There are the following symbols being constrained 
by the expressions e1 and e2:

s1:  isym[ e1 ]
s2:  isym[ s1 e2 ]

In the same way as above the constrain expression 
should be moved towards symbols before. It would 
result in:

s1:  isym[ e1 e2 ]
s2:  isym[ s1 ]

The first symbol could be further reduced as in 
case 3 above.

A sketch of arithmetic type 4
Assume that somewhere in a def construct there is 
a pri construct. It contains alternative expressions 
each referring to the symbol:

def[
 pri[
  e1(s1)
  e2(s1)]
 s1: isym[]]

Each of these alternatives may have constraints. 
They may differ. To solve this, the pri construct is 
moved outside the def construct:

pri[
 def[ e1(s1)
   s1: isym[]]
 def[ e1(s2)
   s2: isym[]]]

This creates two parallel symbol equation systems. 
Their solutions are separated. In this case symbol 
s1 is first evaluated. If e1 does not produces a result 
s2 has to be solved.

Arithmetic of type 5
Some arithmetic could not be solved except using a 
special algorithm, e g solving for a trigonometric 
result equalling its argument:

s1: isym[]
unify[ 
 s1
 apply[ cos s1]]

H equivalence rules
A root expression is an expression being a top of a 
graph of expression. A machine may contain any 
number of root expression. Zero expressions re-
sults in an idling machine. Many expression results 
in separate executions. In this section one root ex-
pression is concerned.

Wellformed
Assume that there is one root expression. It con-
tains generators modeling a “large” graph, in some 
cases infinite. This graph is rewritten to another 
graph.

The H language could be reduce to ZERO expres-
sions in some cases. In order to execute there is a 
main reduction direction to create an existing root 
expression. Such an expression does only exist if it 
is not reduced to error or nothing. The concept of 
wellformed is introduced:

• An expression is soft error free if no expres-
sion could create an error from error’ that 
propagates to the root. There are simple 
means by introducing red constructs that will 
guarantee this.

• An expression is nothing free if no expression 
of any type can generate a nothing token 
propagating to the root. There are simple 
means by introducing pri constructs that will 
guarantee this.

From this follows that all expressions introduced 
into the by time expanding root graph must be well-
formed.

Because the concept of representation is used, any 
type of user application may result in an expression 
of representation form. In some cases it is from an 
input through a port or in other cases from a pseu-
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dorandom generator. Hence it is clear that future 
such expressions are not known.

For proper graph reduction the machine should 
know this before executing. This is of course im-
possible. Even if the machine during the start tries 
to expand the root graph as much as possible it 
would be impossible to find out the wellformedness.

To lighten the burden of wellformedness the well-
formedness should apply to each time step of port 
behavior and with applicable input data. In such 
cases the machine would perform graph reductions 
for the root graph creating one additional output.

During one such step it may be the case that well-
formedness is not guaranteed and the root graph is 
reduced to zero expressions. From H language 
point of view the already produced output is a fail-
ure. No execution should have occurred. The ma-
chine and user have made an error that the ma-
chine cannot foresee.

Here it assumed that such false output may be the 
case and is forgiven!

Driving
With driving means the mechanism initiating each 
graph reduction.

The root graph is rewritten in order to find expres-
sions to be nothing free. nothing may be intro-
duced by an expression of representation form, an 
empty alt construct or a unify construct. An ex-
pression tree must be scanned for this. Unifications 
must be performed.

The need for a particular subexpression causes the 
lazy evaluation mechanism to traverse down an 
expression to the particular subexpression.

Reduction rules
In a separate table the reduction rules are 
sketched. They are defined by equality. The left 
expression is reduced to the right expression. 
There are also restrictions on each expression de-
fining the order the rewrite rules shall be used. 
They are not shown.

PROCESS CONCEPT
In this section there is an orientation about applica-
tive processes. In rp8601 the concept is named 
behavior.

Assume there are a number of resources rn, time 
periods Tn and expressions en:

cn = [ en rn Tn ]
C = {… cn …}

A course of events cn is the triplet of these. A com-
plete course of events C is a set of such course of 

events. T is absolute time period from tb to te. The 
resource rn is to house the course of events. It 
could be a virtual one like speed of subject or the 
voltage on a physical port. The expression en char-
acterizes the course of events.

The course of events above is a continuous course 
of events. If the time period is changed to just an 
event at time Tn it is a discrete course of events.

A real course of events is what is actual happening 
in the physical world. The course of events could 
not be seen. It just exists. A modeled course of 
events is what is described above, or just short 
course of events.

Modeled course of events may be included in time 
sequences where course of events are time slices. 
Each such course of events could be modeled rela-
tive its beginning. Such a time slice is a relative 
course of events in contrast to an absolute. Instead 
of a time period it has a duration. The discrete one 
has a pulse.

Model
Current real-time systems cannot model course of 
events. Instead there is an interaction between the 
real behavior outside the system and the internal 
system. Animation software describes modeled 
course of events. It could be played. A modeled 
course of events in the rp8601 is implemented with 
a data structure. It may be analyzed, simulated or 
played.

Behaviors
There are a number of course of events Cn in-
cluded in a behavior B:

B = {… Cn …}

Such a set could be the complete set of course of 
events for a particular item. It could be real word 
item, a real-time system or some internal process 
in a computer system. Examples of course of 
events and behavior expressed in the H language 
are:

C: seq[ ca cb cc cd ce cf ]

B: alt[
 seq[ ca cb cc cd ce cf ]
 seq[ ca cb cg ch ci ]
 seq[ cj ck cl cm ]]

A real-time system uses a program that can pro-
duce the behavior B. After the system has executed 
it exhibit C. The real time system runs and at a par-
ticular time, an occasion, it exhibits a state. At the 
beginning of execution the real-time system has the 
state B, at the end of execution state C. At an oc-
casion b the state S:

S: seq[ ca cb
  alt[
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ConElem = {delta, epsilon, some’, something’, empty’, nothing’, any’, int(n), cyc(n), real(r), cycfix(r),
  some, something}
ConH = {symb’, phys’, part’, bag’, alt’, pri’, if’, unify’, def’, sel’,  apply’, repr’, red’, alloc’, net’, time’}
ConList = {par, seq} ∪ ConH
RedElem = {nothing, any}
RedList = {part, if, unify, def, sel, apply, repr, alloc, net, time}
OPS = phys’[…] being built-in operations
INS = symb[ n ] being built-in instructions

type [ e1 … part[ ex … ey ] … en ] = type [ e1 … ex … ey … en ] type∈ConList
part[ ] = empty
type [ e1 … empty … en ] = type [ e1 … … en ]     type∈ConList

bag [ e1 … alt[ ex … ey ] … en ] = bag [ e1 … ex … ey … en ]
type [ e1 … nothing … en ] = type [ e1 … … en ]     type∈{bag, alt, pri}
type [ e1 … nothing … en ] = nothing        type∈ConList ∪ RedList
type [ ] = nothing              type∈{alt, pri, if}

type [ e1 ] = e1               type∈{alt, pri, if, unify}
type [ e1 … ex … ey … en ] = type [ e1 … ey … ex … en ]  type∈{bag, alt, unify}
type [ e1 e2 … ex … ey … en ] = type [ e1 … ey … ex … en ]  type∈{if, def}, x>1, y>1
type [ e1 … type[ ex … ey ] … en ] = type [ e1 … ex … ey … en ] type∈{alt, pri, if, unify}
type1[ e1 … type2[ ex … ey ] … en ]
 = type2[ type1 [ e1 … ex … en] … type1[ e1 … ey … en]] type1∈ConList ∪ RedList, type2 = {alt, pri}

if[ e1 e2 … en ] =  e1              ∀x>1: notNothing(ex)
if[ e1 e2 …any … en ] = if[ e1 e2 … … en ]

unify[ ] = any
unify[ e1 …any … en ] = unify[ e1 … … en ]
unify[ e  e ] = e               type∈ConElem
unify[ symb[ n ]  symb[ n ] ] = symb[ n ]
unify[ type[ a1 … an ] type[ b1 … bn ] ] = type[ unify[ a1 b1 ] … unify[ an bn ] ]
unify[ type1[ a1 … ax ] type2[ b1 … by ] ] = nothing   (x ≠ y ∪ type1≠type2) ∩ type∈ConList

def[ e1 … en ] = def[ e1@[ e1 … en ] … en@[ e1 … en ]]
type [ ex … ey ] @[ e1 … en ]
 = type [ ex@[ e1 … en ] … ey@[ e1 … en ]]      type≠def
e @[ e1 … en ] = e             type∈ConElem ∪ {nothing, any, error}
sel[ i1 … in ]@[ e1 … en ] = sel[ @[ e1 … en ] i1 … in ]
sel[ e1 ] = e1
sel[ @[ e1 … ex … en ] ix … in ] = sel[ ex … in ]
sel[ type[ e1 … en ] ix … in ] = sel[ e1 ix … in ]      type∈{def, red}, ∀x-1: notNothing(ex)

apply[ repr[ e1 ] ] = e1
apply[ symb’[ e1 … en ] ] = symb[ uniqueNumber ]
apply[ phys’[ e1 … en ] ] = hardwareDependent
apply[ type’ [ ex … ey ]] = type[ apply[ ex ] … apply[ ey ]]]  type’∈ConH ∩ {symb, phys}
apply[ e1  e2 … en ] = def[ apply[ e1 ] e2 … en ]     e1 ∉INS
apply[ e1  e2 … en ] = nothing          e1 ∈INS, ∃x>1: not notNothing(ex)

red[ ] = error
red[ e1 … ] = e1
red[ e1 … error … en ] = red[ e1 … … en ]

Equivalence rules for H language. Internal symbols is an implementation issue.



   part[ cc cd ce cf ]
   part[ cg ch ci ]]]

The course of events ca cb have been passed. They 
are said to be the history. The remaining part is a 
behavior described by the alt construct. The real-
time system prunes the alternative gradually as 
time elapses.

The history is generally a very large data structure. 
Some of this data structure may be forgotten be-
cause it is of no use for the application:

S: seq[ some cb
  alt[
   part[ cc cd ce cf ]
   part[ cg ch ci ]]]

Generators
Behaviors may be very complex. Most such could 
not be programmed in any available computer lan-
guage. Simplified, but good enough, mechanisms 
may be used. They are discussed.

There are parallel course of events s1, s2 and s3:

P:  par[
s1:  seq[ ca cb cc cd ce cf ]
s2  seq[ ca cb cg ch ci ]
s3  seq[ cj ck cl cm ]]

They may have different duration. The specification 
of cx defines the time periods.

A grammar may be used to generate a behavior. It 
should include the basic concept, seq and par 
structure. The method is versatile when generating 
waveforms.

In an analogous way state machines may be im-
plemented. State machines are equivalent with 
grammars. Conversion from one specification to 
the other is possible. One state in a state machine 
is described by a generator for that state. The state 
machine contains a number of generators Gn and 
an initial generator IN:

def [
 IN
 G1 … GN]

Gx: part[ cx 
  alt[ Gy … Gz ]]

Grammar and state machine together with the ba-
sic method form three different forms to represent a 
behavior. Conversion between them is possible. All 
basic behaviors cannot be expressed in a grammar 
or a state machine.

Constructing
Assume that there exists a number of behaviors 
modeling proper issues. Now use three of them b1, 
b2 and b3:

Here b1 and b2 are duplicated being 2 and 3 sepa-
rate behaviors. Two groups A and B are formed. A 
contains b1 and b2 and a local expression using 
them. B contains b2 and a local behavior b3 and an 
expression using them. Group A and B communi-
cate by the b2 behavior. A and B can both be rewrit-
ten as separate modules. In the module concept 
the local references are implemented as unification 
with the external behaviors:

def[
 b1: seq[ … ]
 b2: seq[ … ]

 unify[ par[ b1 b2 ] A ]
 unify[ b2 B ]

 A: def[
   par[d1 d2]
   localA(d1, d2)]

 B: def[
   c2
   localB(c2, b3)
   b3: seq[ … ]]

Messages
H does not have message passing. However a pa-
rameter transfer can be written in a way rather simi-
lar to message passing. In order to describe this 
there are three behaviors. Earlier it was shown how 
such three behavior are used to connect two mod-
ules. One in each module and one between the 
modules. Now ignore the modules. View three cor-
responding elements of the behaviors:

b1:  seq[ … duration[ en adn Tf Tt] … ]
b2:  seq[ … pulse[ en adn Tf] pulse[… Tt] … ]
b3:  seq[ … duration[ en adn Tf Tt] … ]

There is a flow from b1 to b2 and b3. The specifica-
tion of the basic course of events has not yet been 
standardized. There are two constructors duration 
and pulse. The first duration is rewritten by some 
not shown function to a pulse when issued at the 
beginning of the period Tf. The next pulse comes at 
the next duration. Tt is known there. With the 
knowledge of two adjacent pulses the duration in b3 
could be evaluated.

  b1: seq[ … ]

  b1

  localA(b1, b2)

  b2

  b2: seq[ … ]

  b2

  localB(b2, b3)
  b3: seq[ … ]
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There is as shown above a method going from du-
ration to pulses. The pulses correspond somewhat 
to conventional messages.

A behavior uses symbols to transfer expressions. 
The expressions may be used in functions evaluat-
ing new expressions. These new expressions my 
be needed in real time. In a well-formed real behav-
ior the evaluation is possible in real time. This 
means that a value to be bound in future cannot be 
used now!

Time and order
An absolute time has been used in course of 
events of earlier examples. This could be lightened. 
It is discussed here. For the moment assume there 
is only pulse course of events and ignore every-
thing except the time T. Use the symbol ∆ to indi-
cate a pulse.

There are two parallel courses of events

par[
 seq[ T1 ∆1 T2 … T3 ∆3 … ]
 seq[ T4 ∆4 T5 … T6 ∆6 … ]

In this example all pulses are placed in time. There 
is no ambiguity. If T1= T2= T3 it is possible to elimi-
nate all by the first T1. The same applies to the 
second behavior.

Now assume all times except T1 and T4 are slightly 
different. There may be a behavior that is not strict 
(not using) in these times. In this case just the or-
der have importance and the times could be 
dropped. This could be generalized by using cas-
caded sequences:

par[
 seq[ T1 seq[ ∆1 … ∆3 ]]
 seq[ T4 seq[ ∆4 … ∆6 ]]]

With this method it is possible to encapsulate 
pulses in sequences that are understood by the 
application. There may be parallel behaviors. They 
may be rewritten to sequences of parallel behav-
iors: 

seq[ T1 par[
    seq[ ∆ … ∆ ]
    seq[ ∆ … ∆ ]]
  T4 par[
    seq[ ∆ … ∆ ]
    seq[ ∆ … ∆ ]]]

All these changes relies on a wellformed expres-
sion understanding the sequences. Each parallel 
sequence could be considered a single transaction.

There may be expressions having a semantics over 
unsynchronized behaviors. They have to inspect 
the time order.

EXECUTION MECHANISM
In this section a “machine” performing the execu-
tion of the H-language is described. It is a theoreti-
cal machine that has to be refined. It is based on 
the availability of unlimited resources. Thus word 
length, number of memory cells etc are of arbitrary 
size. In subsequent sections this model is refined.

Graph rewriting
Graf rewriting is based on an application divided 
into a number of expression. Expressions refer to 
each other by identifiers.

The execution mechanisms consists of a number of 
processes each being an expression or an identi-
fier. If an expression or identifier is not fulfilling cer-
tain characteristics the process is waiting otherwise 
it is active. Therefore numerous processes may 
rewrite in parallel. Therefore massive parallelism 
is available being a potential for highest possible 
execution speed.

The software engineer expressing his solution in a 
language may use a “parallel” or “sequential” way. 
A good example on this difference is parallel versus 
standard sequential sort algorithms.

Another more fundamental problem in applicative 
languages based on λ-calculus is the use of tail-
recursion to construct lists. Tail recursion is a very 
sequential implementation. Modern functional lan-
guages as Mathematica has replaced this by gen-
erators!

Closures
The rp8601 implements the expression by closures 
as described earlier. The general closure is a defi-
nition of a function expr referred to by an identifier 
id:

idn = exprn

The expression exprn may be self contained or use 
identifiers to refer other expressions. A shown ear-
lier def constructs are used to form directed 
graphs. Each such constructs forms a typed list, 
the environment env, that is accessed by a sel 
construct.

idn = exprn (… sel[ad1…adm]…) @ envn

From mathematical point of view this is a high order 
function application using the environment as an 
argument.

In order to implement a rewrite mechanism some 
rewrite rules needs a state local to the closure. 
Thus the closure is augmented by some tags:

idn = exprn @ envn, tagsn
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Identifiers
An identifier idn is defined in a closure and is re-
ferred to from other closures by the same identifier 
idn. They all depict the expression of the referred 
closure. The identifier consist of a unique pattern 
(=number) and a state. The state is a comprehen-
sive information of the state of reduction of the ex-
pression exprn.

The graph rewrite mechanism is based on inspec-
tion of a closure with all its contents including re-
ferred identifiers and its own identifier. The state 
may be proper to perform a rewrite or not.

If not there may be a need to evaluate a subex-
pression referred by an identifier. The state of the 
identifier is changed indicating a request to rewrite. 
If that already is the case execution waits. A subex-
pression is pending.

After a rewrite operation the characteristics of the 
closure may have changed. Hence its identifier 
tags have to be changed.

Parallel issues
As described, the identifier is a sort of address and 
a signal firing graph reduction.

All identifiers idn (having the same pattern) is an 
identifier domain. All have to be synchronized, but it 
is almost impossible in a parallel machine. The 
state may differ.

The state is from one first state through a number 
of states to a final state. There is no loop back 
(however an implementation has a cycle, as de-
scribed in next section). The individual state of idn 
is to be not more forward than idn of the closure, 
and it should catch up (caused by a delay) to the 
proper state.

The effect of such a delay is an unnecessary delay 
or an additional unnecessary graph rewrite.

Rewrite mechanism
Rewriting of a graph will cause a number of small 
rewrite steps. Each such step signals another ex-
pression. Hence there is a sequence of closures 
involved. Without going into details, there is a trav-
erse from the root of the tree down to a leaf and 
back again. In a branch of the tree the traverse 
may be to each branch in a certain order or some 
branches may be traversed in parallel.

The application may have the property not to termi-
nate if a particular order is not the case. An exam-
ple is an if-else expression. The separate branches 
should not be executed before the logic condition!

There are cases where termination is possible but 
the number of resources may be prohibitive.

The graph rewrite mechanism is controlled. An ex-
pressions is a list. Execution order is in order of the 
elements, if not specified differently by a rewrite 
rule. A list is divided into two parts. The first part 
must be executed in order and the second part in 
arbitrary order or in parallel. The elements of the 
first part are tagged depth and in the second part 
breadth. It is visible to the programmer in the H 
language! 

ALLOCATED RESOURCES
In this section a “machine” performing the execu-
tion of the H-language is described as defined in 
the previous section. The “machine” is a real ma-
chine with limited number of resources, however 
not a machine implementation.

Memory cell
A closure is represented by some information 
stored in bits. This information is stored in a mem-
ory cell that is a process performing “rewrite” op-
erations.

A memory cell mm is free or has a stored closure 
cn. In the latter case it is either in the state off per-
forming no rewrites or being active. When active 
there are several states, e g idle, wait, and exec.

A memory cell has a physical address adm. A 
physical address is used in a very different way in a 
classic computer. They should not be mixed up.

Allocation
There are a number of a memory cells mm. In this 
section it is assumed that the amount of cells is 
finite, but the number of cells may be large.

The memory cells may differ in size each storing a 
closure expression of different size, but greatly lim-
ited. The rewrite capacity may also differ, thus 
memory cells are specialized:

mm = {adm, cn}

or with more details

mm = {adm, {statem, {idn, {exprn, envn, tagsn}}}}

Assume that there is a time t, actual or virtual time. 
It could be assumed to be a real value stepping to 
a higher value.

The basic mechanisms by allocation is to bind a 
closure cn to a particular memory cell mm with the 
physical address adm during a time period Ta being 
from ta to ta+1. During the life of the machine a par-
ticular closure may be present during the period 
Tcn. During the period it may be allocated to (stored 
in) different memory cells:

Tcn = t1 …tn…ta
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… {{adm, cn}, tx, tx+1} …

The memory cell mm is scheduled to perform a re-
write operation at a number of events trwm,r during 
the period Trwm.

The implementation of a machine is defined by an 
alloc structure being part of the H language:

alloc[rn, adm, ta, ta+1, sch]

From a logic point of view this construct is an iden-
tity. The application state is defined by an expres-
sion defined in a representation rn. The representa-
tion is stored in the physical address adm during a 
time period ta to ta+1. sch indicates how rewrite op-
erations are scheduled.

Now assume that there is “machine” software tak-
ing as input a description of a physical machine 
and an application (being a representation) to exe-
cute. This machine evaluates to a set of course of 
events, one for each closure. The alloc structures 
are the events.

A soft machine
A soft machine is an interpreter for the “machine”. 
The semantics of the alloc construct allows physi-
cal or soft interpretation of a part of an application, 
not just complete trees.

A soft machine may have a side effect being a 
communication with a user. As such it can be used 
to implement various types of software as debug-
gers, performance meters etc.

A physical machine
A physical machine is a hardware implementation. 
In this section its details are ignored. Because of 
the physical nature of the machine the implementa-
tion of the alloc construct can and must be altered 
as shown below.

The general use of the alloc construct is to perform 
a sequence of rewrite operations. Formally the al-
loc constructs work on representation, thus it con-
verts the representation to an expression, performs 
the operation, and converts the result back to a 
representation. These conversions between ex-
pression and representation are therefore not nec-
essary except for in the root closure of the entire 
system. They could be dropped.

If not dropped they must be implemented in hard-
ware requesting more resources and as such re-
cursively new resources in order to implement their 
alloc constructs and there is no termination. There-
fore the hardware MUST use the expression form 
and not its representation.

Physical address
If a closure cn is stored in the memory cell with the 
physical address adm being the address of the alloc 
construct the address is of no use. The address is 
implicitly there because of the position.

When moving or copying a closure to other mem-
ory cells the physical address is needed. In such 
cases the alloc construct could be placed in a 
separate memory cell!

Thus an implementation does not need to store the 
physical address in every memory cell.

Time period
The alloc structure must be kept for the time be-
fore, and during the time period ta…ta+1. After the 
time period the alloc structure is made free. An im-
plementation may therefore have only one alloc 
construct for a part.

In a physical implementation memory cells are 
made free by garbage collection. Therefore an en-
tire tree of closures is made free when the topmost 
and all references into the tree are made free. Of 
this reason it is not necessary to store the time pe-
riod in each closure.

Scheduling control
The scheduling control sch cannot be dropped. 
This information corresponds to priority mecha-
nisms in normal processors. As such they are im-
plementations for improving speed and response 
time. Therefore this concept must be implementa-
tion dependent.

In order to solve this I shall give a hint how to im-
plement this:

Analogous to the alloc construct an additional 
schedule is used to schedule one rewrite opera-
tion. Let the scheduling mechanism (a software) 
create a behavior included in the scheduling infor-
mation sch for each thread of execution.

• The scheduling information is stored in the 
processor as long as it executes one thread.

• When there is an “interrupt” the closure to be 
executed is rewritten into a scheduling con-
struct.

• Then there is a search among the scheduling 
constructs to find the next one to execute.

Operations
There are the following “operations” in the machine:

store
stores a closure cn without a rewrite. This is the 
general memory function.
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rw
rewrites a closure cn in a memory cell.

rpid
rewrites an identifier idn in all memory cells.

mv
moves a closure cn by switching the contents 
of one memory cell mf to another mt, generally 
being empty. The amount of used memory 
cells is kept. This is implemented by two suc-
cessive alloc constructs, one for the current 
period and one for the coming period.

cp
copies a closure cn from one memory cell mf to 
another mt being empty. The amount of used 
memory cells is increased by one. This is im-
plemented by two alloc constructs having over-
lapping periods.

unpack
unpacks a compound expression expn contain-
ing one subexpression exps into two closures. 
One free memory cell is written to a new con-
tent exps and its place in expn is replaced by 
ids. This is implemented by two alloc constructs 
having the same period.

pack
packs a closure cn with the expression expn 
containing the identifier ids, which is replaced 
by the expression exps of another closure cs. 
This is implemented by two alloc constructs 
having the same period.

rm
freeing a memory cell by storing the closure 
expression free.

Identifier domain
Identifiers are special. They are the glue between 
the expressions. When implemented they form a 
sort of physical distributed process.

An identifier idn is defined in a closure Cd. The clo-
sure Cd is said to be the domain closure of idn and 
its expression domain expression of idn. An identi-
fier idn is stored in a set of closures Cn with the set 
of physical addresses ADn. The domain of an iden-
tifier idn are all the physical addresses in ADn. A 
domain specification is a construct containing ADn.

Rewriting an identifier is perform in its domain.

Garbage collection
Garbage collection is performed by rewriting all 
used memory cells. The identifier domain is ana-
lyzed. If it is the memory cell itself the memory cell 
is made free.

This type of implementation would consume many 
rewrite operations. By adding a particular state “po-
tential garbage” to each memory cell only those 
cells need to be rewritten. The state is implemented 
by adding a state gc to each identifier. In a memory 
cell mgc containing a closure idgc = exprgc where the 
identifier idgc is tagged gc the memory cell is to per-
form garbage collection rewrite.

When a memory cell is made free all the identifiers 
within its expression are tagged gc, thus propagat-
ing the gc down the graph to used closures.

This method reduces the amount of garbage collec-
tion rewrites. The garbage collection is a parallel 
process to the application process. There are lots 
of other in literature reported garbage collection 
methods. They are generally based on freezing at 
least a part of the memory during the operation. 
After such an operation there is no garbage.

The method used in rp8601 has garbage almost all 
the time and the memory is never frozen. If mem-
ory becomes full and normal execution is impossi-
ble garbage collection can still be performed re-
leasing memory cells for execution.

Physical processor
A soft implementation of the alloc construct uses 
variables to transport values between memory 
cells. A hardware implementation consist just of 
registers an communication paths. Of that reason 
some memory cells must be kept together.

All “operations” in this section are assumed to be 
atomic, i e unbreakable. A single level memory cell 
has a closure with an expression being just a list. In 
a compound memory cell this expression consists 
of at least two levels of lists.

The rpid operation is processed in the entire mem-
ory in an atomic operation. In the next section this 
restriction is released.

The store and rm operations could be performed in 
a single level memory cell.

In many cases rw consists of a one level expres-
sion. In those cases the operation may be per-
formed in a single level memory cell. Otherwise a 
compound memory cell is needed.

The mv, cp, pack and unpack operations must be 
performed in some single level memory cells in ad-
dition to the main memory cell due to the need to 
transport values between memory cells.

Memory type
In a hardware implementation the memory cell may 
be implemented in several ways giving the storage 
mechanism different characteristics.
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There may be memory cells being volatile, non-
volatile, one time write, fixed, removable etc. By 
using the alloc construct these memory cells may 
be written. Depending on the memory there are 
restrictions on the allocation, e g only canonical 
values may be stored in one time write memories.

Removable memory
Memory cells may be placed in different physical 
memories. These memories may be changes in the 
computer structure or being add on memories such 
as USB-memories.

The structure of a machine including the add on 
memories is controlled by some software creating a 
behavior being alloc-constructs. In order to imple-
ment a removable device a sort of interface is 
needed. A machine could be modeled by two dif-
ferent expression trees L and E, being the content 
of local and external memories, respectively:

def[
2 par[
3  alloc[L(ei), adlocal, …],
4  interface(ei, emem),
5  alloc[E=emem, adext, …]],
6 ei, emem]

The program contains a definition of three modules, 
one on each row 3 to 5 and two symbols on line 6.

On line 3 the main program/data structure L is allo-
cated to the local address adlocal. The construct L(ei) 
is not proper but indicates that L contains a refer-
ence to the symbol ei.

Line 4 contains a module here also sketched to 
refer to the symbols ei and emem.

On line 5 the external memory is allocated contain-
ing the external data structure E depicted by the 
symbol emem.

The symbols are one time written by unification 
internal to either L or interface. Both L and E are 
assumed to be of representation form. In a real im-
plementation line 2 to 5 is implemented as a behav-
ior causing different binding at different periods.

During a first period E may be empty and in a sub-
sequent period E contains an expression. Then the 
interface controls the memory to be disconnected. 
In a non volatile storage E remains. At a later pe-
riod the interface connects the memory and makes 
E available.

Because of the lazy mechanism E is assumed not 
to be used during the time the external memory is 
disconnected. However, if so the reference emem 
has no definition (i e closure) and is reduced to er-
ror. In a real example there may be many refer-
ences into E.

If E contains “pure data” the representation E de-
scribes a canonical structure. E may also be parts 
of a computation, i e a state in the middle of a 
computation. In such cases E represents a non 
canonical structure. E may be moved to another 
computer and parts may be rewritten there. Subse-
quently it may returned.

This implies that a subexpression of any type may 
be sent to another computer and processed there. 
All under the control of the H language!

PARTITIONED RESOURCES
In this section the memory cells described in the 
last section are partitioned into a number of memo-
ries. Here called clusters. The memories are sepa-
rate processes performing communication and 
graph rewriting. The aim is to focus on implemen-
table structures.

A cluster
 A cluster is a number of memory cells. It may con-
tain zero, one or several compound memory cells. 
Some additional special memory cells, network 
cells, are added.

The design goal of a cluster is:

• a small graph may be stored as a whole inside 
a cluster

• all machine operations discussed in the pre-
ceding section could be rewritten locally inside 
the cluster.

• some clusters are special and performs port 
semantics and have external physical connec-
tions.

All operations except rpid and mv are always per-
formed locally. rpid is performed locally or globally. 
mv is a global operation.

mv operation
The mv operation is performed when closure cmv 
contains an alloc construct. It contains a physical 
address admv, that is the target of the move.

The move operation acts as the closure is a token 
randomly walking between clusters until it reaches 
its target address admv. In an overloaded system it 
may not reach its final position! This is assumed to 
be a design error of the application.

Global graph rewriting
The clusters could be modeled as separate proc-
esses communicating according to some protocol 
performing atomic rewrite operations. mv is a spe-
cial case where the rewrite operation has the side 
effect of moving a closure.
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The global graph rewrite is constrained to the ones 
possible to describe in ONE closure:

idn
idn@env

this is an identity rewrite of identifier idn. It is a 
signal that a reduction is needed. In some 
cases the environment is needed. Actually it is 
net[idn adr], see next section.

idn = constantred
idn = idred
idn@envn = constantred
idn@envn = idred

in these four rewrites an identifier idn is rewrit-
ten to another scalar. A rpid operation is im-
plemented by this rewrite.

idn = expred
an identifier idn is rewritten to an expression 
expred including tags.

A global cp “operation” is performed by the first 
rewrite signaling the source of idn and after a delay 
the last rewrite returns the expression expred.

The communication protocol is intentionally de-
signed as a rewrite operation. Sending global re-
writes more then ones does not harm. It may cause 
some additional computation. If a system does not 
have atomic operations there may be a race caus-
ing a rewrite to be late. This does not harm be-
cause the applicative language will always rewrite 
to the same result even if the step in a rewrite chain 
is stepped backwards!

An expression is always reduced from free towards 
a final canonical result. However there is an addi-
tional step back to free when garbage collecting. 
This case must be handled with care!

Parallel global rewrite
An identifier idn has a domain ADn. A rewrite rule is 
always from an identifier to some expression. Thus 
only the memory cells mn of the domain ADn are 
involved.

A typical application contains a hugh number of 
domains. All these domains may be rewritten in 
parallel. Beware of the garbage collection rewrite.

Implementation
All clusters have at least one special memory cell, 
the network cell. It is assumed only to be used 
temporarily. A global rewrite operation issues and 
receives rewrite rules in this memory cell. The op-
eration is atomic:

• empty

• receiving a closure from the identifier domain 
and performing a rewrite operation in the local 
cluster

• from the local cluster a rewrite rule is received 
and sent to the identifier domain.

Identifier domains
As shown above all rewrite operations, local as well 
as global, may be performed in parallel as long as 
the identifier domain is know.

An identifier idn has a domain as described earlier. 
Closures may be copied, moved and rewritten. The 
domain is therefore a dynamic concept. There may 
be many physical addresses in a domain and the 
size of the domain specification may be consider-
able and prohibitive.

A domain specification may contain more ad-
dresses than actually needed. It is an oversized 
domain. The only drawback is that the reach of the 
global rewrite operations may be larger than nec-
essary causing to many local executions for a 
global rewrite operation. However the size of the 
domain specification may be considerably reduced.

The domain specification may contain standard 
sets all being supersets of the identifier domain. 
One trivial and very useful such specification is the 
local cluster! Other ones are supersets of clusters 
as shown in the next section.

DOMAIN AND TRACE GRAPH
A trace graph is a model graph showing the reduc-
tion history in a graph reduction machine. The 
graph is not a structure used by the machine - in-
stead it is all expressions unfold which are ac-
cessed and rewritten.

A trace structure is a closure ctr read before a 
graph rewrite. Each such trace may also contain 
the physical address adtr where the closure is 
stored and the time period Ttr it was stored:

trace[ctr, adtr, Ttr]

The closure contains an expression referring to 
other trace structures. The complete graph is a 
trace graph TR. It contains all details necessary to 
understand the course of events during the execu-
tion.

The trace graph could be use to show the result of 
an execution as well as being a tool for planning an 
execution.

Applications
The apply construct is used to create an instance 
of a representation. It is the tool to unfold expres-
sions. Each such operation creates an augmented 
copy. This copying mechanism is the major mecha-
nism building the trace graph.
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Correspondence to classic computing
The copying mechanism corresponds to instruction 
fetch in classic computers. The rw of expressions 
corresponds to arithmetic instruction execution. 
The rpid corresponds to store instruction execu-
tion.

Performance
There are cluster operations as rw, pack, unpack, 
cp, rm, and network operations mv and rpid. In a 
trace graph the the links corresponds to network 
operations. Trace constructs corresponds to cluster 
operations.

An application P is the “program” together with all 
its arguments to execute. The execution causes the 
trace graph TRP. It has the following characteris-
tics:

• the number of links is the volume of network 
operations

• the number of trace constructs is the volume of 
cluster operations

• the depth is the maximum number of trace 
constructs cascaded

• the breadth equals the volume of network op-
erations divided by the dept.

• there is a statistics being the number of refer-
ences in identifier domains.

Sharing of expressions causes the difference be-
tween the volume of network and cluster opera-
tions. Generally they are in the same range.

Characteristics of cluster operations
Actual hardware has execution time for each indi-
vidual type of cluster operation. They are here as-
sumed to be equal.

Characteristics of network operations
The network performance depends on the number 
of transports and its pattern. Each network opera-
tion accesses the domain of its identifier. The 
transport load depends on the size of the domain.

In order to understand this, a space is used. Essen-
tially it should model the communication. However 
a 2- dimensional (area) is used here. All physical 
addresses should be placed in this area. All do-
mains should be drawn. From this graph it is possi-
ble to understand different applications. Some are 
easy to layout with small domains other not. As-
sume that there exists a near optimum layout. The 
total size of the domains is a characteristic of the 
complexity of the application P.

Copies
Some closures are referenced from many places. 
This may create large domains. By using copies it 

becomes a two level structure. The topmost do-
main has a large size, the domain of each copy is 
smaller. The use of copies may considerably re-
duce the total size of the domains.

Copies are in memory cells, if dynamically allo-
cated their size may be reduced.

Tuning performance
Dynamic allocation of closures and copies is the 
method to tune performance. Each application has 
its own characteristics. There are no general im-
plementation method.

With the alloc construct dynamic allocation may be 
performed.

Constraints
During the execution some clusters may run out of 
memory. Nothing is lost but execution is stopped. 
There is a need of some forced reallocation.

Such reallocations has not yet been studied.

Example 1: Large code
I will use the word code in the following few sec-
tions for function, modules, data etc being the part 
that is called the same in classic processors. Clas-
sic computing is assumed to execute in a proces-
sor (e g x86) with a cash.

A behavior has the characteristics: the code size is 
large, the part of the code accessed is small, each 
new instant behavior uses an almost random part 
of the code. Code is not used several times.

The code is allocated evenly to many (all) clusters. 
Whenever there is a branch the behavior is allo-
cated to the cluster containing the branch. Identifi-
ers domains become small. Load is spread out 
among clusters. Increasing the frequency of exe-
cuting the behavior increases the load on all clus-
ters.

In classic computing the cash do not contain the 
code. Thus the code part is spooling through the 
cash. The memory bandwidth limits execution 
speed.

Example 2: Uneven load
The same type of code as in example 1 is used, but 
the different parts have different load L.

Copies are use of different parts. The number of 
copies is proportional to L, where the smallest 
amount must be 1. Depending on the total load 
some code may have a substantial amount of cop-
ies. All clusters have approximately the same load.

A behavior must branch to different copies almost 
in a random way. Some hash technique may be 
used to select what copy to use.
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Classic computing has the same application as in 
the example 1.

Example 3: Filter
A behavior uses almost all code and it is used may 
times. Typical programs are filters.

Copies of code is allocated to many (all) clusters. A 
part of the behavior fits into one cluster. The behav-
ior must be distributed to the clusters based on 
some key. The clusters all have approximately the 
same load.

The cash works fine in classic computing.

Towards automatic allocation
Finding the proper allocation is not the scope of this 
report. However I will suggest one method. Assume 
that a system could be executed with gradually in-
creasing load.

Beginning with a low load the allocation may be 
tuned. Loads of various parts of the code is meas-
ured. Copies are created in proportion to the load. 
Parts are scattered almost randomly over the clus-
ters. The scattering distance is proportional to iden-
tifier domain sizes.

The optimization is performed by simulated anneal-
ing. The mean re-scattering distance follows the 
temperature.

This optimization is performed when gradually in-
creasing the load.

Identifier domains
Identifier domains are the key to get performance. 
The domain size is given by the application. The 
implementation of the identifier domain may give 
considerable differences.

Domain specification
In a way analogous to the alloc construct the physi-
cal address is given by:

net[ idd adr ]

A memory cell md contains a closure idd = expd. It is 
referred by a net construct. Zero or one memory 
cell mr refer to the net construct. The physical ad-
dress of mr is adr. From H language point of view 
the net construct is an identity.

If there is no reference to the net construct it may 
be garbage collected. From garbage collection 
point of view there is at most ONE reference.

To build a complete domain specification there is 
one net construct for each reference. The net con-
structs refer to one and the same closure.

The alloc construct is designed to facilitate software 
control of the allocation. In the same way the net 

construct may be used. There may be a software 
being a communication protocol between several 
sites implementing the network operations.

Oversized domain specification
Of the same reason as alloc construct could not be 
implemented in each memory cell, the net construct 
could not. Oversized domains are used in hard-
ware. It contains more memory cells than neces-
sary.

Clusters are arranged into a space. The space is 
divided into several clusters and this is repeated 
recursively until there is a cluster of proper minimal 
size.

There may be borders between clusters being the 
same for all levels of the partitioning. A domain ly-
ing over such a border could only be contained in 
the largest cluster. To solve this, the partitioning 
schema may also use a skew moving a cluster ap-
proximately half of its size in some direction.

One memory cell mn contains an identifier idn. An 
oversized domain is a set of memory cells M. There 
is a specification being a number used by all mem-
ory cells mn of M depicting the same M.

An example: Memory cells are placed in a square 
grid. There is a minimal such unit. The side doubles 
for each level. 2 bits are used for skew in x and y-
directions, respectively. The other bits define the 
side length to 2s. 5 bits specifies the size in the 
range 1…65536 and skews.

Domain size used
An identifier domain contains a number of physical 
addresses referring one memory cell. An identifier 
domain is said to be strict if all referring addresses 
use (perform access) the referred memory cell.

This could be the case in lazy programming lan-
guages.

During graph reduction a reference idn requests the 
domain closure at time tn. Some reference may 
never request. The times tn are in the set TRn.

The domain closure may be ready at any time, be-
fore, during TRn or never. There is and should only 
be response when the domain closure is ready. If 
after TRn it is possible to make a global rewrite to 
the entire domain, otherwise it may be subsets.

If resource cost don’t differ complete domains and 
subsets may take part in the global rewrite opera-
tion. Otherwise the cost may be high. If there is no 
other means the entire oversized domain must take 
part.

To eliminate this high cost a combination of the ac-
tual and the oversized domain specifications are 
used:
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• The actual domain specification is used as de-
fault. Temporary net constructs are added. 
There are no references to them. Hence they 
will be garbage collected or removed when 
necessary.

• When there is a request from a reference idn to 
a closure cn, a net construct is placed near the 
memory cell mn containing cn.

• The normal graph reduction continues. There 
may be several accesses to cn creating several 
net constructs.

• When cn is ready rpid uses the net constructs 
by rewriting to them and not the entire domain. 

• The net construct is subsequently performing 
the global rewrite in the specific physical ad-
dress adr. Then the net construct is removed.

Because it is a combination of two methods there 
must be some indication which one to use. Gar-
bage collection uses the default one. rpid uses the 
net constructs if nothing special have happened as 
run out of memory.

This method changes the normal access to point-
to-point accesses. It is a dramatic reduction in net-
work resources.

REDUCTION PROCESSOR
An implementation of a cluster in an integrated cir-
cuit is described in this section. In the project the 
various parts of such a circuit was studied. No 
complete unit was designed. However several test 
implementation of parts were. This section de-
scribes another circuit based on the experience 
from these designs.2

A number of variables are used here to describe 
sizes and other physical characteristics. After such 
a variable a parentheses may be seen containing 
the value used in the project. At the end of this sec-
tion there is a table specifying all these values.

The cluster implemented as an integrated circuit is 
here depicted reduction processor. It has nnet (4) 
number of network ports. The processor contains 
one (1) memory cell containing a two level expres-
sion, nnet (4) network cells, and nmem (512) memory 
cells containing a single level expression, and one 
(0) time cell.

The basic list contains nelem (4) elements. The nu-
meric part uses a word-length of wword (32) bits. 

The state information of the identifiers has a width 
of wIDstate (6) bits. Hence the total word length to 
store is wmem (38) bits. The list type has a word 
length of wtype (5) bits.

The physical address was fixed for the memory 
cells. The lower part in the physical address se-
lected word within a reduction processor. More sig-
nificant bits selected reduction processor. Identifi-
ers used the physical address as pattern.

The reduction processor is a complete unit needing 
no other supporting circuitry except for the commu-
nication network.

A port is implemented analogous to the reduction 
processor. It may in some other variants of the re-
duction processor be integrated in the reduction 
processor.

Unit
The reduction processor is implemented as a unit 
that has the following ports:

network ports
There nnet (4) network ports. They are bidirec-
tional high speed serial ports.

The reduction processor is built based on a struc-
ture of numerous list elements. There are also 
some few list type elements being short. In this im-
plementation an additional element of full size is 
used for the type. It may be the case that this ele-
ment could share the environment env element. In 
the next section this is the case.

A data-path is used with the following abutted units 
using a data-path width wmem (38):

network unit
is a communication device performing trans-
mission of a closure through network pins. It 
consists of a shift register. The unit contains an 
additional latch and a bidirectional data-path of 
wtr (4) bits connected to a network transceiver 
unit. It controls the latch and data-path. Read-
ing an writing the registers is controlled by the 
reduction rule unit.

core unit
is a special unit containing one closure with a 
two level expression. It has local data-paths 
making permutation of various expression 
elements possible. It is controlled by the reduc-
tion rule unit.
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time unit
is a unit containing absolute time. Essentially it 
is a counter that is stepped by time and two 
accuracy elements. Stepping is controlled by 
the clock unit. The remaining part is controlled 
by the reduction rule unit.

All these units communicates through a switching 
network implementing communication between the 
units over data-paths with the width wmem-

There is a memory abutting to the data-path above. 
It contains a local bus connecting nbanks (1) of 
memories. There are also some few simple circuits 
calculating the total result from all memory banks. 
The major unit of the memory and reduction proc-
essor is:

memory unit
is a bank of memory cells. It has the width of 
an element wmem (38). It contains a number of 
words partitioned into groups for one closure 
3+nexpr (6). The group contains the identifier id, 
the environment env, and a nelem (4) number of 
elements of the expression expr and the ex-
pression type. The type has the word length 
wtype (5). It is not necessary to implement it as 
a separate word but may be integrated in the 
environment env (not researched). A bank con-
tains nclo (512) closures.

There are some additional cells being peripheral to 
the the data-paths. Essentially they do not have 
any regular structure:

clock unit
is a unit being a phase locked oscillator. The 
output speed could be set. The phase locking 
mechanism reads the network ports through 
the network transceiver units. It also steps the 
real time clock in the time unit. 

network transceiver unit
is a bidirectional transceiver for a network port. 
On the external side bit serial signals are used. 
On the internal side words wtr (4) bits are used. 
Single bit could not be used because of speed 
and power. One transceiver controls one net-
work unit.

routing unit
is a unit performing combinatoric domain 
arithmetic on identifiers. It also performs rout-
ing arithmetic used to choose communication 
port. It contains latches for parts of the identi-
fier. It is controlled by the reduction rule unit.

arithmetic unit
is a unit containing three registers being of the 
size of one element wmem. During arithmetic 
they contain the three first elements of an ex-
pression, where the first one contains the func-

tion identifier and the remaining the operands. 
They are copies of the corresponding words in 
the core cell. Combinatoric circuits perform the 
built in arithmetic. It is controlled by the reduc-
tion rule unit.

The control of the data-path is by clock unit, net-
work transceiver unit(s) all having minor control but 
being asynchronous. Essentially they are synchro-
nised to the data-path. More about this in the next 
section. The main control under this is by:

reduction rule unit
is a unit containing the tags of the core cell. It 
performs the combinatoric arithmetic to create 
the control of graph rewriting used by the core 
cell, net cells and time unit. Its implementation 
is not combinatorisc.

Timing and control
The clock unit contains a high frequency oscillator. 
It generates two output clocks being phased. The 
high frequency fcom is used by the network trans-
ceivers, and the low frequency fdata the remaining 
part of the processor.

The logic cycle implements one logic operation as 
graph rewrite and phase locked oscillator control. A 
logic cycle consists of several clock cycles. Each 
logic operation has a preplanned use of the follow-
ing cycles. The use of the cycles depends on the 
register contents.

The data-path performs preplanned register trans-
fers through a switching network. Generally full clo-
sures are transferred. The memory uses several 
phases to perform one operation. The reduction 
rule unit controls the use of the cycles.

Arithmetic unit
The arithmetic unit contains 3 registers being dupli-
cated elements of the core expression. The first 
register contains a hardware address being the 
operation code and the two others are arguments. 
Thus monadic and dyadic operations may be per-
formed. The arithmetic unit also contains an addi-
tional state if the built in operations are not combi-
natoric.

The implementation of the sub-operations are 
combinatoric and could be assumed to be a heap 
of gates. However they should internally be de-
signed with care.

Optimization
For the rp8601 architecture it is important to opti-
mize the size. A numeric application is distributed to 
all reduction processors. An implementation may 
use different amount of reduction processors. The 
total sum of the areas of the reduction processors 
should be minimized. The major part of the area is 
the memory unit. The core and network units can 
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be made small. The arithmetic unit may take a con-
siderable size as reported in literature. See also 
next section.

Simple integer arithmetic like add, compare etc has 
a negligible size. Floating point add may be of 
small or moderate size. Integer or floating point 
multiply may be rather small or take a considerable 
size.

There is a trade-off between size of arithmetic unit 
and the number of reduction processors. The opti-
mum is not known. It is certainly application de-
pendent.

The project implementation
The project used a simple adder with two dual di-
rected shifting networks of 4 and 1 bits. It imple-
ments almost all operations in one cycle. Integer 
multiply use a 17 and divide a 33 cycle algorithm.

Floating point is implemented with separate align-
ment, normalization and numeric operations. 
Alignment was implemented in maximum 10 fast 
cycles corresponding to a mean value of 2.2 cy-
cles. Normalization is performed in one cycle. Add 
and multiply parts are performed in 1 and 13 cy-
cles, respectively. This results in a floating point 
add of 4.2 cycles and a multiply of 15 cycles. The 
normal mix in filter applications is even, thus the 
mean floating point operation takes about 9 cycles.

The message is: for floating point a very simple 
arithmetic unit is at most 9 times worse than a large 
parallel implementation. Including surrounding glue 
operations it is less.

Time and clock units
Time T is represented as a cycfix. This value is 
stored in a register in the time unit. It is stepping as 
time elapses. The time T should be the same in all 
reduction processors. In order to achieve this the 
frequency of the local oscillators must be the same 
and then T have to be fixed to show the same 
value.

VCO
The clock unit consists of a voltage controlled oscil-
lator VCO and a control value cvco. The oscillator is 
to be controlled to be phase locked to all corre-
sponding oscillators in a system of reduction proc-
essors. Internally it may not have the same fre-
quency but a frequency unit 2n Hz could be derived. 
Such units are phase locked.

The communication speed on the network ports 
should be the same or a multiple of 2. Thus the 
transitions should occur in known places. The clock 
units use these to control the cvco of the VCO. If the 
clock has the highest accuracy in the system it is 
not controlled. Otherwise the mean of the adjust-

ment from the most accurate network ports are 
used.

Phase locking
Each reduction processor has a time construct be-
ing:

time [ T, accnom, accach ]

T is the time and the other two accuracies being 
reals. The accnom is the accuracy stamped on the 
crystal or the corresponding. The accach is the ac-
curacy achieved by the phase locking algorithms. 
The time construct is included in the H language.

The phase locking algorithm sets the system fre-
quency to the most accurate clock. If there are 
several such clocks the approximate mean fre-
quency is used. When synchronized, time should 
be set to the latest time of all clocks. The reason to 
this is that time must always go forward!

Reduction processors emit the time construct into 
the network. Recipients read it and adjust the time 
and VCO accordingly.

When a VCO is adjusted the transitions on the 
network ports will keep the VCO synchronized. If 
the traffic is low additional time constructs are to be 
emitted in order to keep accuracy. It is assumed 
that the traffic load due to time constructs are neg-
ligible.

Initially when a clock starts the achieved accuracy 
accach is 0 and the time constructs are emitted with 
this value. The maximum value of the local and the 
received accach sets the local one. Some filtering is 
used. In this way the accach of the most accurate 
clock is calculated. When adding a new clock in the 
system the same takes place, but there is already a 
time T set. The accach tells this. The local time is set 
to the received value.

When no time constructs are received and the ac-
cach is higher than accnom the accach is reduced by 
time. Eventually it reaches the nominal accuracy 
accnom.

Network synchronizing
A network consists of nodes being communicating 
hardware units. Each such unit is assumed to have 
a clock. Communication is performed point-to-point. 
Thus nearby clocks synchronize.

If there is one most accurate clock the achieved 
accach accuracy is distributed from this clock and 
outwards in the network causing accach to propa-
gate. If there are several such clocks their accach is 
distributed in the same way.
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Memory unit
There are a number nbanks of parallel memory 
banks, each being a memory unit3. Some simple 
selection circuitry selects the proper memory bank.

Memory operations
The memory has the basic mechanism as storage. 
It implements the basic operations store, rpid, mv, 
cp and rm. For the mv and cp operations the core 
unit supplies a closure as argument.

The memory is associative.

An associative memory CAM is different from a 
normal random access memory RAM. The RAM 
has a fixed built in address but the CAM searches 
for particular patterns and sets non, one or several 
mark bits of each word. They could subsequently 
be used in some operation over all words and the 
mark bits are subsequently set. The mark bit is 
used to select a word to be read or written. Opera-
tions do generally need to know whether at least 
one mark bit is set.

In a conventional RAM there is a fixed address for 
each word. The access could be divided in an ad-
dress decode (= search) that sets a dynamic mark 
bit that drives the memory word to read or write. 
The CAM has no such address (-decoder) but uses 
the stored contents.

Within a closure there is an additional state being 
an OR between mark bits.

A memory could be design with all words equal. If 
so an addition state first word is added to each 
memory word.

The rp8601 memory uses the following sub-
operations:

idle
the memory stores something. The memory 
could be set in a low power electric state.

init
init first word

sets the contents to an initial value. Depending 
on the physical design it could be performed in 
several ways. One operation or one for each 
word of the memory may be needed. This op-
eration is only performed at power up.

find free, exec
searches the memory for a closure being free 
or exec, respectively. The mark bit is set ac-
cordingly.

find Id idarg
ind env idarg
find Ids idarg

searches the memory for a closure where the 
identifier, environment or each element, re-
spectively, pattern equals idarg and sets the 
mark bit accordingly.

first word
and

OR between the mark bits in the preceding 
operation was evaluated. If true the mark bit of 
the first word is set, and if not the mark bits are 
reset, respectively.

first
performs an operation on all mark bits. Words 
are organized in a fixed order defined by the 
memory structure. The mark bit of the first 
word having a mark bit set is set, the remain-
ing are cleared.

read
performs a read of the word having a mark bit 
set. One and only one word is read. The mark 
bit is shifted to the next word (neighbor) of the 
closure. A sequence of read operations is used 
to read a complete closure.

write
performs the write of zero, one or many words 
in a single step. Several writes are used 
analogous with the read operation.

There is an output indicating that at least one mark 
bit is set.

Memory structure
The memory is a 2-dimensional device. Vertically 
there are words, and horizontally bits. The main 
parts of the memory are:

bit driver unit
is used for reading and driving one bit-line pair 
of the memory. There is a port used by the 
core cell for the transport of a value. The unit 
performs the operations idle, write 0/1, 
search -/0/1 and read 0/1. The search could 
be ignored (-) in order to mask out bits. De-
pending on memory operation the individually 
bits are controlled.

word head unit
is used to drive the word-line of a memory 
word or read the compare result. There is one 
register bit mark. It could be dynamic. The cir-
cuitry performs the operations idle, cmp bits, 
first and access. cmp sets mark according to 
a wired-and on the word-line. first reads from 
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the first unit. access drives the word-line and 
shifts the mark bit to next word.

first unit
reads the mark bits and calculates a new mark 
bit indicating the first mark bit in the memory. It 
also performs the wired-or between all mark 
bits of the memory.

memory cell unit
is used to store a one bit value. It is controlled 
by the bit-line pair and the word-line. The com-
binations possible are: idle, write 0/1, read 0/
1, equal -/0/1 Twl/Fwl, i e 10 variants. A classic 
RAM cell has 5 variants.

Reduction rule unit
The clock unit creates clock signals as the main 
control of a reduction processor. Using these the 
reduction unit unit controls the reduction processor. 
It contains bits from several registers and a local 
state of control. This state is used to plan all cycles 
of a logic operation. In order to simplify wiring the 
contents of some few registers in the core cell is 
duplicated and placed in the reduction rule unit. 
They are copied when transferred to the core cell.

During the initial part of a logic cycle a cell is cho-
sen to be placed in the core cell. Asynchronous 
units as the network cells and time cell have stored 
some few bits being requests for operation. The 
reduction unit selects one of the cells to be rewrit-
ten and transfers its contents to the core cell during 
some few cycle. Rewrites occur. After the comple-
tion the result is restored if necessary. Going back 
and forth between core cell and net cell/memory 
waists cycles. By good planning this could possibly 
be eliminated in some grade. However for simplicity 
its described in this way.

The reduction unit reads the state and performs an 
“associative” look up for a sequence of control 
signals.4 

The control unit is based on:

phase
This is the steps in the reduction processor. It 
contains a list of bits with a walking “1” indicat-
ing the the phase. There are nphases phases. 
They are stored in a shift register. Generally 
there are only rather few phases needed. The 
maximum amount is not known. It is in the 
range of 90.

state
This is a register strobing the data-path of the 
core cell. During transfers the content is built 

up. It contains the type of lists, the identifier 
states of the first level expression and some 
return signals from them memory indicating 
“found” etc. It has some additional hand shak-
ing bits from the asynchronous units. The width 
wstate is unknown but is expected to be around 
80 bits.

rule
There are nrules of rules rule being a logic AND 
condition of the state. They all produce a boo-
lean result. nrules is not known but is expected 
to be in the range 200…500.

operator
An operator is a tuple: start phase top and se-
quence of control words opseq. The top is used 
to “fire” a sequence the corresponding phase. 
There is a logic OR between rules selecting 
several operators. There are nops cases. The 
number is not known but is expected to be 
around 150.

sequence
A sequence is a serial of phases with control 
signals. Each sequence opseq consists of one 
control word cw for each phase. A sequence is 
started and last for oplength phases. Each se-
quence has its own length oplength. Summing all 
oplength  gives the total number of control words 
nseq. There may be several sequences running 
simultaneously. There is one shift register for 
each sequence having a length corresponding 
of oplength bits.

control word
A control word is one bit for each control signal 
in the data-path and other units. The control 
word has wcw control signals. It is not known 
but is slightly more than 254. The number of 
control words nseq is not known. A rough esti-
mate is 480.

As shown there are the tables: rule, operator [top, 
opseq], start operator top and control word cw. Their 
values are “programmed” into the hardware.

This could be abstacted by using the H language 
in:

apply[
 ORbag
 bag[
  alt[ if[
    during[top, seq[ cw ]]
    unify[rule, state]]
   … ]]
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Where ORbag performs or between all control sig-
nals of the bag.

Parameters

parameter project this
wword 32 32
wIDstate 6 6
wmem 38 38
wtype 5 5
nelem 4 4
wtr 4 8
nnet 4 4
nbanks 1 8
nclo 512
nphases 90
wstate 80
nrules 500
nops 150
nseq 480
wcw 254
fcom 536 MHz 10 GHz
fdata 25 MHz 5 GHz

CIRCUIT
In this section there is a circuit implementation of 
the reduction processor described in the preceding 
paragraph. In the project the various parts of such 
a circuit was studied. No complete component was 
designed. However several test circuits was manu-
factured.

The technologies at time of the project is far from 
what is present. However the circuits has not 
changed that much. In this chapter the circuits are 
described. The performance is from a virtual 40nm 
technology5. Contemporary processor technology 
is 18nm. All figures are rough estimates.

Circuit basics
The technology aimed at is a CMOS technology of 
contemporary performance. No special feature is 
requested for.

Wired and/or
Much of the processor is regular array like compo-
nents. They are used in associative memories, reg-
isters and read-only memory structures. They all 
have some type of logic AND or OR on some wires. 
In CMOS such structures are dynamic: first set to 1 

(and)/0 (or) and then a transistor implements the 
logic by reversing the signal. A 1 (and)/0 (or) case 
is represented by a non reversed signal. Its value is 
maintained by the charge of a wire capacitance.

From test point of view circuits are to be tested at 
low speed. The solution to this is to have a small 
current into the node. Here this is accomplished by 
a transistor in weak inversion.

Multiplexer
In structure arithmetic the general operations are 
selections of complete word values from different 
sources. Each bit may be implemented either as a 
logic equation or as a transmission. From logic 
point of view they are identical. In this processor 
almost everything is structure arithmetic.

A transmission may be performed in one or two 
directions. In the latter case an extreme compli-
cated logic results. It is comparable to functional 
versus logic language using symbols. Logic imple-
mentation result in many wires and addition gates. 
Because of the distribution of source values in a 
data-path the logic method also adds many wires in 
the one direction case. This increases power and 
area.

Some technologies are based on the use of such 
functional approach6. In this section pass transistor 
methods are used as in transmission gates.

Testing
Modern testing methods are based on testing stor-
age and combinatoric circuit parts separately. The 
combinatoric circuits are tested by stimulating them 
by introducing test values in registers and reading 
results in other registers. Storage values are read 
out and read in by shifting values through the regis-
ters acting as shift registers. The performance of 
such registers are slightly changed.

The storage has to be divided into two parts of 
storage: registers and memories. Some small reg-
ister structures have to be tested as memories.

Registers are tested by sending a value through 
the registers as being one shift register. Memories 
do not have the additional costly logic for testing. 
Instead they have to be tested by stimulating them 
from a register. Clever organization of memories 
and registers make this feasible.

There may be a need to connect registers to a 
data-path in order to stimulate/analyze it. The core 
unit in this reduction processor must have such an 
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1.1V power, has a ring oscillator delay of 5ps, a gate oxide of 25nm. Typical saturatioin currents are 600A/m and 300A/m per gate 
width for N and P transistors, respectively. Static memory cells have size 0.25µm2 and gate density 2 gatesµm2.

6 # It was tested with a very negative result.



additional register. It should read or write through 
the main switching network.

Registers have to be special. In one mode they act 
as normal registers and in the other “test” mode 
they act as test shift registers.

Power consumption
Power in circuits are caused by charging wire ca-
pacitances. In order to reduce power, the main 
structure of the processor must be influenced and 
not just on lowest level.

Registers may use clocks. A clock is always (be-
ware of controlling the clock) switching. Depending 
on the circuit design there is a considerable amount 
of power, even if the logic state is stable. The main 
cause of this is the control of logic or pass transis-
tors. This causes the idle power consumption.

Using few clock controlled registers reduces this 
power consumption. Registers circuits are changed 
to have set or store modes (e g latches). Without 
clever design there may be racing problems.

In this processors only main control signals are im-
plemented in clocked registers. There are about 
some hundreds of them. They will cause the idle 
power consumption when the clock is running.

Data-paths in this machine transfer values from 
one register to another. There are no cycle formed. 
Therefore simple control wires are used to control 
the storage elements. Control signals have to be 
stable and have no glitches. It is accomplished by 
storing the control signals in clocked registers.

Data-paths generally have many transistors con-
nected. In order to reduce its power the wires are 
divided into hierarchical set of wires. Only that part 
used is switched. This technique is used in the 
network components and the core component.

Control wires are generally loaded by at least one 
transistor of each bit-plane in a data-path. The ca-
pacitance is considerable. Driving such wires by 
logic gates may cause glitches causing addition 
switches. In this processor all control signals are 
latched an have stable signals.

A data-path have over hundred control signals. The 
number of simultaneously switched control signals 
(not total number) have to be minimized. There is in 
some gates a trade-off between power consump-
tion in data-path wires and control wires. In this 
processor this trade-off has been used.

Arrays like memories do have many transistors 
connected to each horizontal and vertical wire. The 
switching of or/and arithmetic causes generally all 
wires except on in the or-plane to be switched. Its 
hard to change this.

In some cases the OR characteristic is known. The 
or-plane could be implemented with set and reset 
transistors. Such an implementation needs two 
“address” wires. In such a memory used word wires 
and 2 address wires switches. It is a hugh reduc-
tion in power consumption. This techniques is used 
in the implementation of sequences.

Switching speed
Propagation delays are caused by serial connec-
tions of transistors and parallel load of wire and 
transistor capacitances.

The number of serial transistors is caused by the 
logic. Partitioning a logic as hierarchical structures 
adds one pass transistor for each level in an ap-
proximately linear way. On the contrary the capaci-
tive load may shrink exponentially. There is a trade-
off. Buses are divided in at least a two level struc-
ture in this processor.

High-speed states could be coded in a dense form 
like a number. Decoders are gate structure of sev-
eral levels. They generally have gates with several 
inputs where the delay is quadratic with the number 
of inputs. In this processor one register is used for 
each state. The state is available in shortest delay 
after the clock signal.

Array structures perform set and reset of word 
wires. The reset is the logical function. Generally 
there is some few transistors, including the pro-
grammed one, in serial. The word wire capacitive 
load is mostly loaded by connected transistors. The 
only way to reduce this delay is either improve the 
contents pattern or divide the memory in separate 
structures. None is used in this processor.

The array “address” wires are generally decoded. 
Such a decoder adds delay as a gate.

Buffering is either a scaling of transistors or adding 
cascaded scaled inverters. Some transistor scaling 
may enhance performance. In this processor addi-
tion of inverters are used, especially on control 
wires and long data-path wires.

Data-flow sectioning is a method to separate logic 
components. By adding registers between the 
logic, the step cycle could be reduced, however the 
number of steps are increased, and also latency 
time. Adding additional registers causes additional 
power consumption by the registers and their clock. 
This sectioning is used in the network units in this 
processor.

Data-flow sectioning of wires is a method to sepa-
rate one wire into sections. In this way the large 
capacitance load may be divided. Between sec-
tions are registers added. Because the total capaci-
tance is slightly increased the power consumption 
increases, but on the contrary the propagation de-
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lay for each section is divided. Hence the through-
put is increase but not the latency time. This 
method is used for the wires between net units, 
memories and the core unit in this processor.

Components
There are two major components, the latch and the 
master slave latch.They use two phases. They 
have 8 and 16 transistors. Almost all transistors 
switch during a cycle. If high resistivity poly with low 
capacitance is available the master slave latch 
uses 8 transistors and 2 resistors. The power con-
sumption is halved and propagation delay time is 
shortened.

Multiplexers are complementary pairs of pass tran-
sistors.

Data-path
The data-path is one component. It implements nnet 
net units, one core unit, one time unit and one 
scheduling unit. All except the last one has been 
define in the preceding section. The last one is 
something needed but not known. It is at least one 
register holding an interrupt time and an equal 
comparator between time and interrupt time.

All these units and the memory are connected to a 
bidirectional switching network. It is partitioned into 
two levels an divided into three sections. 

The net units is part of one section. Each net unit 
has a local switching network. All units are normal 
registers except an additional buffer latch. It con-
tains a mast slave latch and connections to a 
switching network connected to the transceiver.

The memories are on its own section of the switch-
ing network.

All registers of the core unit, time unit and schedul-
ing units are forming one register bank. The time 
register contains a master slave register with an 
additional input from a +1 arithmetic. The remaining 
registers are normal registers. The registers are 
connected to a two level switching network.

The time unit has one adder stepping with +1 and a 
comparator. Stepping is slow and the adder is a 
normal daisy chain circuit. The comparator is a 
wired AND doing a compare the cycle after the 
step.

Reduction rule unit
The reduction rule component implements the re-
duction unit with all its tables.

Registers
The phase, control word, and sequence are regis-
ters working all the time. There is no way to change 
their behavior by time. In a quiescent state their 
clock are still working and power is consumed.

The active rules register is an output from the AND-
plane of the rules control memory. It works as a 
buffer and is used to eliminate glitches. Some few 
of the registers bits are set, the remaining are off. 
Hence there are few switching bits. The register 
has a preplanned control signal. Generally it is only 
needed to strobe under some few steps of a logic 
operation.

The timed operation registers is an analogous 
buffer from the output of the OR-plane of the opera-
tion control memory.

Read only arrays
The AND-plane of the rules control memory con-
sists of one transistor for each strict input. Each 
output wire is reset when result is transferred to the 
active rules register.

The OR-plane of the operator control memory con-
sists of one transistor for each strict input. Each 
output wire is reset when result is transferred to the 
timed operation registers.

The OR-plane of the start operator control memory 
has a pass transistor between the the timed opera-
tors register an the input of a sequence shift regis-
ter. The pass transistor is controlled by the phase. 
The output wires are reset by the first step of the 
sequence register.

The GATE-plane of the control word control mem-
ory contains inverse pairs of wires for each se-
quence step. There is one transistor used for 0 and 
one for 1 output. All output wires from the memory 
are controlled. Thus there are only switching on 
control wires being active. Only some few wires are 
switching.

Memory
The memory is the storage element of rp8601. As 
will be shown in this section it is the major compo-
nent of the hardware. It dominates the chip area, 
power dissipation and delay time. It is the key com-
ponent of the rp8601 paradigm. The major differ-
ence with a conventional processor is the ratio 
processor area versus memory cell area. rp8601 
has a very small  non-memory part allowing more 
reduction processors for the same amount of 
memory!
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There is no such memories as the one asked for. 
This is a more commercial issue than a technical. 
Circuits are described but not the constellation. The 
challenge is to get the proper design of the 
memory.7

The RAM memory cell is almost fixed to a 6 transis-
tor cell with scaled transistors. There are CAM 
memory cells of size of 12 (with and without scaled 
transistors), 10 (with active load), and 8 (with poly-
silicon resistors) transistors presented in literature. 

The project has invented cells with 6 (active load), 
4 (with polysilicon resistors), and a dynamic of 4 
transistors. All these memory cells are described in 
order of decreasing chip area. They are easy to 
plug into the memory architecture. The general 
trend is that the bit-line drive is more complicated 
for the smallest memory cells.
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7 # The project used one large closure as memory cell. There was no significant drawback compared to single element wide memory 
word. There was a need to have one additional wire for each word-line. In the layout it did not change the size of a memory cell. 
The use of memory words of element size has the issue where to store the list type.

switching transistorsswitching transistorsswitching transistors
width no cwires bits control T/cell T idle step reduction

data-path
core 38 22 4 836 88 8 6 688 0 608
time T 38 1 6 38 6 18 684 0
time +1 38 1 12 456
time = 38 1 6 228
acc 38 2 4 76 8 8 608 0
schedul 38 6 4 228 24 8 1 824 0
comm 38 2 8 76 16 20 1 520 0 1 520
net 38 28 4 1 064 112 8 8 512

2 318 254 88 20 520
reduction rule
phase 90 1 2 90 2 16 1 440 736
state 80 1 2 80 2 16 1 280 1 280
active rules 500 1 2 500 2 8 4 000 80
timed operator 150 1 2 150 2 8 1 200 24 1 200
sequence 80 1 6 80 6 18 1 440 480 54
control word 254 1 3 254 3 19 4 826 2 032 266

1 154 17 14 186
control memories
rules 500 80 40 000 1 40 000 20 000
operator 150 500 75 000 1 75 000 75 000
start operator 150 90 13 500 1 13 500 450 13 500
control word 480 254 121 920 2 243 840 28

250 420 372 340 3 248 2 950 111 060
activ signals
control word 14
sequencies 3
active rules 10
activ core nodes 2
n step/reduction 20

energy/transistor 63,0 aJ
fdata 5,0 GHz
P/transistor 0,16 µW
area array/transistor 0,0625 µm2

area data-path/tran-
sistor

0,5000 µm2

P 1,18 mW 0,51 0,23 0,44
area 40 624 µm2

Physical performance exclusive memory and arithmetic unit



First operation
The first operation has not been used in memories 
before. In conventional computers, lists are built to 
administrate what the first operation does.

It is used to select one of several when searching 
for a free closure cell  and a waiting closure.

The free closure cell could be implemented by ad-
ditional register hardware. Hence each free closure 
is assigned a number as on the hight of a stack. 
The stack height is placed in a register and in the 
free closure. There is a search for this cell when 
creating a new closure. The method is simple and 
good!

In the case of a waiting closure there is not such an 
order. Threads could be stacked and a fixed priority 
order used. To do this it is necessary to add an ad-
ditional closure to link the thread. This additional 
closure stores the stack height.

As a computer architect I say: this is possible but it 
is a violence on the scheduling mechanism, espe-
cially the breadth first mechanism, which is hard to 
implement.

Considering the operation as a hardware imple-
mentation. It is an additional priority decoder. Such 
one could be a long daisy chain of and-gates. The 
semantics is simple but this implementation is pro-
hibited for large memories.

Cascading the memory in hierarchical sections may 
reduce the propagation delay to log memory size. 
Each level needs a local daisy chain and a wired 
OR of priority requests. Thus each level needs on 
transistor for the OR and an AND-gate for the daisy 
chain together with two wires.

Assuming a size of 16 for each level, 5 levels are 
1M closures or about 50Mbyte. The raw delay is 5 
OR and 80 daisy chain steps. By certain slower 
than one memory access. However, the access 
could be buffered by a register element, and in that 
case speed is not an issue. The additional area is 
in the range of 2 memory cells. Thus the overhead 
is in the range of 5-10%.

It is motivated to use a hardware first implementa-
tion!

Word head
The memory stores elements. They are formed into 
groups being closures. There may be a hardware 
partitioning of the words into closures. An other way 
is to store a marker in the first word of a closure.

The find memory operations must know what parts 
being accessed. find free, find exec, and find id 
searches among the first element being the identi-
fier of the closure. find ids searches all elements. 
Adding one bit to the word makes all memory 
words identical. The borders between closures are 
set at initialization. This first bit may also be read-
only, a mask places a simplified memory cell con-
sisting of one wire and one transistor.

The logic of the word head is simple. A straight for-
ward circuit consists of 14 transistors, 10 N and 4 P 
transistors. It uses 5 control wires. For some of the 
memory cells mentioned 2  additional P transistors 
are needed. The local speed and power dissipation 
are good.

This cell should fit at the edge of a word, either at 
one edge or interleaved at both edges. Using a 
technology rich in wires makes one edge imple-
mentation feasible8.

The memory cell design may complicate the word 
head by need of special sense and drive circuits.

Bit-line driver
The logic function of the bit-line driver is very sim-
ple: a latch, an external bus transmission gate, a 
decoder (one gate) used for controlling the various 
memory operations, plus driver and sense ampli-
fier. The two latter are the complex ones and have 
the major impact of the design.

The memory cell used defines what driver and 
sense amplifier to use. Switching the bit-lines con-
sumes the major part of the power dissipation. The 
read delay time is defined by the integration of 
sense amplifier and the memory cell.

Memory cell
As shown above the memory cell gives the charac-
teristics of the memory.

The area is given by the number of transistors, the 
use of both P and N channel transistors, the 
amount of wires in bit as well as word direction. In 
the bit direction the cells use 2 wires. In the word 
directions the earlier cells use two wires and the 
project cells use one wire. To this comes VDD and 
GND. GND is not used in the project cells. Com-
plementary cells are used in the earlier cells and 
only N transistors for two of the project cells9.

This report should focus on a memory cell contain-
ing 4 N-channel transistors, 2 polysilicon resistors, 
2 bit wires, one word-line and an additional VDD 
wire.
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to use modern SRAM technology to analyse those cells.



In short it works as follows:

• in idling state bit-lines are low

• in write 0/1 bit-lines are complementary and 
the word-line low

• in reading the word-line is low, the currents in 
the bit-line are complementary. A sense ampli-
fier increases the signal levels

• an equal operation is performed in two steps: 
the bit-lines and word-line are low; the key is 
complementary driven on the bit-lines. Two of 
the transistors work as diodes, thus the word-
line is assigned the maximum value from these 
diodes only for those bits being conducting. It 
is used as an XOR gate for NOT EQUAL.

In a more detailed analysis all three operations use 
the same voltage scheme - how to differ between 
the variants? It is a matter of scaling and driving 
force.

Performance
The memory cell is compared to SRAM cell and 
other CAM cells.

The idle performance is defined by the load charac-
teristics: polysilicon or complementary CMOS tran-
sistors. All circuits perform good.

The write is performed in almost the same way in 
all cells. Scaling between transistors may influence. 
Time to write depends mainly on bit-line driving 
capacity. The project cells use diode giving slow 
switching characteristics. These are not as impor-
tant as the bit-line drive.

Reading differs between the cells. Generally the 
cells have a stable state with one of the N-channel 
transistors heavily conducting. There is a transistor 
between the bit-line and the internal node. In some 
way it is scaled or as in the project cells being a 
diode (giving lowest current). They all produces a 
low current into the bit-line. A sense amplifier 

measures the current by integrating the charge in 
the bit-line capacitances. Thus the combination of 
bit-line capacitance and current is the key factor.

The equal operation differs a lot (SRAM does use 
this operation), all non project cells have half an 
exclusive or implemented  by 4 transistors. They 
work in forward direction and conducts heavily. 
Equal is fast. The project memory cells uses diode 
configured transistors to conduct. The current is 
lower than in the other case, and when voltage 
rises on the word-line it becomes even less! Thus 
equal is slow!

There is no reason that power dissipation should 
differ much between the cells. All have approxi-
mately the same capacitive load in their nodes, bit-
lines, and word-lines.

There have not been any comparative layout be-
tween the discussed cells. However the use of 
fewer wires, less amount of transistors, and of only 
N-channel types ought to give a substantial lower 
area for the project cell.

Performance
The table on page 33 gives details for the different 
units. The units are designed with the parameters 
shown at the end of the last section.

Performance is measure in per unit the width, 
number of units and number of control wires per 
unit, the amount of bits stored, total number of con-
trol wires, number of transistors per cell and total 
amount.

The calculation of power consumption is based on 
all energy loss is caused by switching transistors in 
an idle state, one active clock step and for one 
logical operation (reduction).

In the lower left part of the table the characteristics 
of a transistor is shown. Under active signals the 
characteristics of the control is defined. From this 
the area and power consumption in a running re-
duction processor is calculated.

The power consumption exclusive memory and 
arithmetic unit without net traffic is about 1.2mW 
and the area 0.04mm2. Special small units are 
probably negligible.

An arithmetic unit as described in last section is 
probably less than 20.000 transistors, correspond-
ing to an area of 0.01mm2. It is not fully utilized, but 
have maximum power consumption of 3mW.

A real implementation result in higher values due to 
ignoring wire capacitances and some glue needed 
to separate transistors.
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PACKAGING
The project developed two multi-chip packages for 
a multiprocessor. There was a smaller one, size 
63.5mm square, based on air cooling and larger 
water cooled assembly being a pile of packages, 
each 152.4mm square, for about 2000 chips each 
housing hundreds of reduction processors (today).

The water cooling system used a frame placed be-
tween stacked multi-chip packages. The water 

pressure pressed a thin foil against the package. 
Water flows diagonally through the frame. Inte-
grated in the foil was wires and pads to be in con-
tact with pads on the package. The foil formed the 
inter-package communication wires. A separate 
power connector was used on each edge of the 
frame. They formed a connection between the 
multi-chip package and 6 vertical high current 
power supply bars, VDD and GND.
The thermal path was short: from the die, through 
silver paste, the substrate, and through the foil to 
the water. Because of the water pressure and the 
flexible foil there was a negligible distance between 
the substrate and the foil. The design goal was 
about 200W dissipation per package.

The large multi-chip package consisted of a laser 
cut substrate 1.27mm thick. A laminated ceramic 
sheet with a rim to form a cavity was used as lid. 
The cavity was filled with gel (injected through two 
holes) in order to sustain pressure.

Signal and power wires was printed with thick film 
gold paste. Vias were laser cut. A decoupling high-
capacitive layer was used for decoupling power 
wires. The contact points were gold balls. There 
were 4x24 communication links between neighbor-
ing packages. A link consisted of 3 wires. They 
formed strip-lines.

The package was designed and tested to fulfill mili-
tary range temperature and vibration.
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152.4 mm water cooling frame with integrated wires and contacts

63.5mm multi-chip package
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152.4 mm package (test prototype), open lid, with decoupling capacitors (blue), no chips, links are daisy chained for test
small pads: links, large rectangular pads: power, inner pair of pads at corners: crystal, outer: links daisy chain, thick wires: power

152.4 mm package



CONCLUSION
A computer architecture has been described, All 
major parts from language through logic implemen-
tation, and chip circuitry to final packaging has 
been described.

It is scalable from a small about 1mm2 computer 
area to at least 4000x50mm2 used in a pile of multi-
chip packages. The major part is memory. Arbitrary 
many reduction processors may be used. The 
smallest one could house about 250kB memory 
and some few processors. The larger piled one 
about 50Gbyte and 200,000 reduction processors. 
Each processor performs some hundreds of million 
reductions/s.

Partitioning an application is not an issue. The ap-
plication works fine in an arbitrary large structure. 
Performance many be tuned to use most of the 
performance.

The technology is available now. However there is 
a need to put it all together in a working concept.

FINAL WORDS

Future developments
The rp8601 is a new paradigm. It has never been 
tried before. Behind some parts there are consider-
able experience, and others very little. The project 
was not finalized.

The classical von Neumann machine has advanced 
from a very simple word oriented machine to the 
advanced and complex processor used today. Fea-
tures have been added to reach economically vi-
able devices. The design in this report is to be con-
sidered to be the first attempt in a new paradigm. 
Hence it should be followed by subsequent refine-
ments. 

Closure size
A closure is from logic point a very efficient item. 
The implementation of the closure being a function 
introduces identifiers to link closures. They are ad-
ditional information needing more memory space. 
Assuming that each element of a closure being one 
word, and a typical closure contains 3 elements, 
the packed variant needs 3 words but the rp8601 
one 6-7 words. It is an overhead 2-2.3 times.

In order to solve this problem a system consisting 
of two parts may be used. On for packed back end 
storage of information and one other. The packed 
one should store not single closures but sub-trees 
where the overhead is then negligible.

Memory size
In conventional machines there are 8, 16, 32, 64 bit 
words. The compiler selects a memory layout to be 
efficient. In rp8601 each element in a closure has 
fixed size. Storing a structure of byte-size informa-
tion in a conventional machine takes 8 bits but in 
rp8601 about 250 bits, an overhead by 30 times.

In a conventional machine the address is to RAM 
where data can be abutted. In rp8601 the smallest 
element is a word of an associative memory. Divid-
ing the word in parts keeping the search mecha-
nism is challenge.

There are some obvious ways by introducing more 
word heads that could be cascaded. Word heads 
have a significant size but not prohibitive. At 8-bit 
words the additional area is probably 100%, alloca-
tion becomes harder and the memory slower.

Another method is to implement efficient operators 
packing/unpacking short words into one element. In 
such case the storage overhead is as shown in the 
preceding section.

Dataflow type of instantiation
The H language is described to cope with any type 
of application. Some could be described by a single 
fully expanded representation (e g fast Fourier 
transform being one large function) using only ar-
gument access by sel construct. When using a 
functional top down reduction a lot of pending 
memory cells are used. They cause an overhead in 
memory utilization.

These programs can benefit from not using a func-
tional method of representation instantiation but a 
data-flow type. This type of instatiation starts from 
the leaves and builds the tree towards the root. 

Such a representation is a graph laid out over all 
processors. Current understanding is that this add-
on is not a language issue. There is very little that 
has to be added as rewrite rules and nothing in 
hardware.

Hardware simulation
A reduction processor consists of some regular 
structures like memory, data-path and reduction 
rule unit. They are the key to performance. There 
are around 20 components consisting of totally 
about 200 transistors.

These cells should be designed and an approxima-
tive layout should be made in an up-to-date tech-
nology. A complete processor consisting of one 
component on each place with loading stubs can 
characterize the electrical performance. A Spice 
simulation should give the electrical characteristics.
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Simulation of reduction rules
In order to understand the complexity of the lan-
guage, a simple simulator should be written were 
rewrite rules are clearly indicated.The basic execu-
tion mechanism should be verified and the equiva-
lence rules should be the result.

Programming experience
The H language is a new untested language type. It 
has not yet been used. There is a need to test the 
language for real applications.

Future research
The storage for expressions should be researched, 
as well logic structure as circuit. It is fundamental to 
the success of the architecture. When cost of chip 
area becomes negligible compared to other system 
cost the current rp8601 computer paradigm is vi-
able.

Patents
There were 34 patents and 234 patent applications 
for parts of the processor filed in major industrial 
countries throughout the world. None of them are 
now maintained.

ACKNOWLEDGEMENT
I am grateful to have had a number of skillful peo-
ple around me. During my time as computer archi-
tect Ingemar Carlsson let me participate in many 
advanced project giving me an invaluable experi-
ence. After some years Erik Tengvald become my 
companion and further on Robert Tjärnström. As a 
group we were very productive.

The project participants
Cyrrus Morteza Afgahi; Birgitta Andersson; Wigne-
san Balakrishnan; Kenneth Berggren; Thomas 
Berndtsson; Kristina Björklund; Staffan Bonnier; 
Jim Brown; Göran Båge; Andrzej Ciepielewski; 
Gunnar Ekolin; Christina Eliasson; Bertil Emmertz; 
Bertil Engman; Lars Ganrot; Ulf Gunneflo; Staffan 
Gustafsson; Sverker Hansson; Carl Hemmingsson; 
Ingemar Hernefjord; Peter Hesseltun; Torbjörn 
Holmberg; Hans Jakobsson; Odd Johansson; Mar-
tin Jones; Ing-Marie Jonsson; Jörgen Jonsson; 
Liselotte Jonsson; Feliks Kluzniak; Jonas Lager-
blad; Bengt Lennartsson; Ralf Lundberg; Jeanette 
Munro; Lars-Åke Nilsson; Tony Nordström; Sten 
Norrman; John Oldfield; Ingvar Olsson; Lars Pa-
reto; Mats Persson; Thomas Persson; Roland Pet-
tersson; Mats Rimborg; Borhan Roohipour; Lars 
Samuelsson; Johan Schubert; Nahid Shahmerhri; 
Hershel Shermis; Bertil Sigfridsson; Roger Skager-
vall; Jan Stein; Hans-Erik Strömvall; Rolf Sundblad; 
Leif Söder; Anne Thurén; Staffan Truvé; Göran Ud-
deborg; Kennet Vilhemsson; Jesper Vasell; Han-
dong Wu; Anders Ödmark; Kenneth Östberg; Mag-
nus Österholm;

Authours contact address
gunnar@hylab.se or gunnar@carlstedt.se

42

mailto:gunnar@hylab.se
mailto:gunnar@hylab.se
mailto:gunnar@hylab.se
mailto:gunnar@hylab.se

