Master’s Thesis
Error performance of turbo codes

Per Ola Ingvarsson

and
Henrik Svenell

Dec 18, 1998

Abstract

In recent years iterative decoding has regained popularity, with the remarkable results pre-
sented in a paper by a group of French researchers. They introduced a new family of convolu-
tional codes, nicknamed “Turbo codes” after the resemblance with the turbo engine. A turbo
code is built from a parallel concatenation of two recursive systematic codes linked together by
nonuniform interleaving. Decoding is done iteratively by two separate a posteriori probability
decoders, each using the decoding results from the other one. For sufficiently large interleaver
sizes, the error correction performance seems to be close to Shannon’s theoretical limit.

In this Master’s Thesis we examine the performance of turbo-codes on the additive white
Gaussian noise channel. The influence of the size of the encoder memory, different types and
sizes of interleavers are examined together with two different decoding algorithms, the one-
way algorithm and the two-way algorithm. We show that the two algorithms have the same
performance and that the choice of interleaver and encoder is important.

Contents

1 Introduction 3
2 Information transmission 4
2.1 Racing towards the Shannon limit 4
2.2 A digital communication system 4
2.3 The discrete time channel Lo 5
2.4 A short introduction to coding theory 7
241 Blockcodes 7

3 Convolutional coding 9
3.1 The general convolutional encoder 9
3.2 The recursive systematic encodero oL oL 12

4 The interleaver 16
4.1 Block interleavers 16
4.1.1 The “classical” block interleaver 16

4.1.2 The pseudo-random block interleaver 17

4.1.3 The multi stage interleaver (MIL) 17

4.2 Convolutional interleavers 19
4.3 Matrix representation of the interleaver 20

5 The turbo encoder 24
5.1 The turco encoder L 24
5.2 Parity-check matrix representation of the turbo encoder 24

6 Iterative decoding 27
6.1 General principles. L 27
6.2 The Two-way or BCJR-algorithm 30
6.3 The One-way Algorithm for APP Decoding 38

7 Implementation of the iterative decoding algorithm 42
7.1 [Iterative decoding using the two-way algorithm 42
7.2 Tterative decoding using the one-way algorithm 43
7.3 A comparison between the one-way and two-way algorithm 44

8 Results 47

9 Conclusions

A Tables
A.1 Simulation results for the two-way implementation
A.2 Simulation results for the one-way implementation

Bibliography

52

53
93
99

59

Chapter 1

Introduction

When transmitting digital information over a noisy channel, it is demanded that the user can
retrieve data with high fidelity or even with no errors. The simplest way to protect data from
corruption is to increase the transmitting power or the so-called signal-to-noise ratio (SNR).
However, this is expensive and in some way impractical. For example, the price for increasing
SNR with one decibel is to increase the transmission power with about 25%. In a satellite
communication system this could cost millions of dollars as the higher effect probably means
higher weight of the satellite. An alternative and more efficient way to solve the problem is
to use error-control coding, which increases the reliability of the communication by adding
redundancy to the information. The redundancy can then be used to detect or correct errors.

In 1993 a new coding scheme, called turbo codes by its discoverers, a group of French re-
searchers, was introduced. It was one of the most important developments in coding theory
for many years. The main advantages of this method, when used together with an iterative
decoding scheme, is low complexity in spite of high performance, which makes it suitable for
mobile communication. It is therefore part of the standard for the third-generation mobile
telecommunications systems.

The main purpose of this Masters Thesis is to study the bit-error performance of turbo codes
on the additive white Gaussian noise channel. The influence of the encoder memory size (2,4
and 6), different interleavers (block and random interleavers) and decoding algorithms (two-
way and one-way) are examined.

The report is organized as follows: The second section, Information transmission, is an intro-
duction to digital communication systems and to coding theory. Section 3 describes convo-
lutional encoders and in particular the recursive systematic encoders. In Section 4 we look
at different interleavers and Section 5 describes the turbo encoder. In Section 6, the iterative
decoder and the a posteriori decoder, are described. Section 7 describes our implementation
of the different algorithms. Section 8 contains the simulation results for various combinations
of turbo codes and the last section consists of a summary and the conclusions. In Appendix A
tables of our simulations are shown.

Chapter 2

Information transmission

2.1 Racing towards the Shannon limit

The history of error-control coding and information theory began in 1948 when Claude E.
Shannon published his famous paper “A Mathematical Theory of Communication” [Sha48].
In his paper Shannon showed that every communication channel has a parameter C' (measured
in bits per second), called the channel capacity. If the desired data transmission rate R; (also
measured in bits per second) of the communication system is less than C, it is possible to
design a communication system, using error-control coding, whose probability of errors in the
output is as small as desired. If the data transmission rate is larger than C' it is not possible
to make the error probability tend towards zero with any code. In other words: channel noise
establishes a limit for the transmission rate, but not for transmission reliability. Shannon’s
theory also tells us that it is more economical to make use of a good code than trying to build
a good channel, e.g., increasing the signalling power. We must note that Shannon did not tell
us how to find suitable codes, his achievement was to prove that they exist.

2.2 A digital communication system

Figure 2.1 shows the functional diagram of a digital communication system. It consists of an
encoder, a channel and a decoder. The source information, x, can be either an analog signal,
such as an audio or video signal, or a digital signal, e.g., computer communication. Without
loss of generality we can assume that the source is discrete in time, since, according to the
sampling theorem, any time continuous signal can be completely reconstructed if the original
continuous signal was sampled with a sampling frequency twice the highest frequency in the
signal.

X
—{ Encoder Channel Decoder —

Figure 2.1: A communication system.

In his paper Shannon showed that the problem of sending information from a source to a
destination over a channel always can be divided into two subproblems. The first is to represent

the output from the information source as a sequence of binary digits. This is called source
coding. The other subproblem is to map the information sequence into a binary sequence
suitable for sending over the channel. This is called channel coding. The main advantage of
this separation principle is that it is possible to use the same channel for different sources
without reconstructing the channel coding.

X Source | ubinary Channel v
encoder digits encoder
Noise Digital
channel
X Source | U@ binary Channel | T
decoder digits decoder

Figure 2.2: A communication system with the encoder and decoder divided into two subcoders.

Figure 2.2 shows our communication system divided according to Shannon’s separation prin-
ciple. The discrete signal from the signal source is fed into the source encoder whose purpose
is to represent the source output using as few binary digits as possible. In other words, it
removes as much redundancy as possible from the source output. The output from the source
encoder is called the information sequence, u. It is fed into the channel encoder whose purpose
is to add, in a controlled manner, some redundancy to the binary information sequence. The
resulting sequence is called the code sequence, v. The code sequence travels from the encoder
to the decoder through the channel. This can be from one place to another, e.g., between a
mobile phone and a base station, or from one time to another, e.g., in a tape recorder or a CD
player. On the channel the signal always will be subjected to distortion, noise or fading. The
purpose of the channel decoder is to correct the errors in the received sequence, r, that was
introduced by the channel, using the redundancy that was introduced by the channel encoder.
The output of the channel decoder is the estimated code sequence, 1. From this sequence the
source decoder reconstructs the original source sequence.

2.3 The discrete time channel

In the previous section we indicated that the channel provides the connection between the
transmitter and the receiver. The physical channel can be a pair of wires that carry an
electrical signal or an optical fiber that carries the signal on a modulated light beam. It can
be free space over which the signal is radiated by an antenna or another media such as magnetic
tapes or disks. In either case we cannot directly send digital information on the channel, thus
we need a way to transform the digital signal into a useful analog waveform, see Figure 2.3.
The transformation from the digital signal to the analog waveform is called modulation. The
modulator transforms every code word to an analog waveform of duration T;. Some of the
most common modulation methods are pulse amplitude modulation (PAM), phase shift keying
(PSK) and frequency shift keying (FSK) [Lin97|. Besides these modulation methods there are
a number of more advanced modulation methods, e.g., the Gaussian minimum shift keying

(GMSK) used in GSM. In this thesis we will only consider transmission using binary phase
shift keying (BPSK) modulation. This means that the modulator generates the waveform

[2Es
sot) = T coswt ,0<t<T (2.1)
0 , otherwise

for the input 0 and s;(t) = —s¢(¢) for the input 1. Here, E; is the signal energy and T} is the
duration of the signal. The modulated signal then enters the channel.

n(t)
v s(t) r(t) r
— Modulator —= V\é?l\;?]f:glm — Demodulator —

Figure 2.3: A decomposition of a digital communication channel.

Since the channel introduces noise, the modulated code words, transmitted through the chan-
nel, are corrupted. In this thesis we will only consider the additive white Gaussian noise
(AWGN) channel. The AWGN noise, n(t), introduced by the channel is Gaussian, with zero-
mean and a two-sided spectral density of Ny/2, i.e.,

En(t)] =0
Ny (2.2)
T2

and it is added to the modulated signal. The received signal is r(t) = s(¢t) + n(t). The
demodulator processes the channel-corrupted transmitted waveform and produces a sequence
of numbers, r = ry7ro..., that represent estimates of the transmitted data symbols. This is
done using a matched filter, i.e., it calculates the convolution between the received symbol and
the matched filter

Vin(t)]

[2 [T
ri = T/ r(t) cos(wt)dt = £/ Es + nj,
s Jo
where n; is the additive noise disturbance. Thus we have

ri € N(+£v/Eqg, v/No/2). (2:3)

The sequence r is then fed into the channel decoder, see Figure 2.2.
The signal-to-noise ratio (SNR) is a measure of the quality of the channel and is defined
as the average ratio of the energy of the desired signal to the energy of the noise signal,

Ey/Ny. It is often measured in dB. If we are sending an uncoded BPSK signal, the signal
energy F is equal to the bit energy Fjp. By using a sign decision rule we get, for the uncoded

case, the bit-error probability
2F
P = _—
b Q (NO))

6

where
Q(z) /oo 1 exp~ Y12 4
T) = —eXx
N o p Y

is the complementary error function of Gaussian statistics |[Lin97].

2.4 A short introduction to coding theory

Error-control coding has taken two major directions: block codes and convolutional codes. As
the rest of the report deals with convolutional codes we here give a short introduction to block
codes.

2.4.1 Block codes

In the block coding case, the sequence of information bits coming from the source encoder
are divided into blocks of length K. These blocks are called messages. There are 25 distinct
messages at the input of the encoder. The block encoder maps each distinct K-tuple of
information into an N-tuple of code, i.e., the code word. A binary (N,K) block code B is a set
of M = 2% binary N-tuples. N is called the block length and the ratio

K

R=— 2.4

o (2.49)
is called the code rate. In order to be able to correct or detect errors K has to be less than
N. The N — K extra added symbols are called the parity-check symbols.

Other important properties of a block code are the Hamming weight, the Hamming dis-
tance and the minimum distance. The Hamming weight, wp(x), is defined as the number
of non-zero elements in the codeword x and the Hamming distance, dg(x,y) = wg(x —y),
is the number of positions where x differs from y. The minimum distance, d,,i,, is defined
as the minimum Hamming distance between any pair of code words. It determines the error
correction capability t of the code as

The block code guarantees correction of the errors if the received sequence differs in ¢ or less
positions from the correct code word. In some cases it might also be able to correct errors
that differs in more than ¢ positions.

Another commonly used property for a code is linearity. A code is linear if a bitwise modulo-2
addition of two code words results in another code word. The all-zero word is always a code
word in a linear code.

Example 2.1: Table 2.1 shows the famous binary (7,4) Hamming block code with one of
the possible mappings from information sequence to code sequence. The rate of the code is

R=4/T.

The Hamming weight of the code word 1000011 is 3 and of 0001111 it is 4. The Hamming

Message | Code word
0000 0000000
0001 0001111
0010 0010110
0011 0011001
0100 0100101
0101 0101010
0110 0110011
0111 0111100
1000 1000011
1001 1001100
1010 1010101
1011 1011010
1100 1100110
1101 1101001
1110 1110000
1111 1111111

Table 2.1: The binary (7,4) Hamming block code.

distance between the code words 1000011 and 0001111 is 3. The minimum distance d,,;, of
the code B is 3 as the minimum Hamming distance for each pair of code words is 3. The
number of errors that can be corrected is ¢ = 1, which means that all errors with Hamming
weight 1 can be corrected. For example if we receive the code word 1110110 we know that it
probably is the code word 1100110 that has been sent and we decode it as @ = 1100.

Chapter 3

Convolutional coding

3.1 The general convolutional encoder

In a convolutional encoder the information bits u = uguq ... are not separated into blocks,
as in the case of block codes, but instead they form a semi-infinite sequence that is shifted
symbol-wise into a shift register, see Figure 3.1. The encoder consists of shift registers and
modulo-2 adders. The memory, m, of the encoder is the number of delay (D) elements in
the shift registers. For the encoder in Figure 3.1 the memory m equals 2. The output of the
encoder is the modulo-2 sum of the values in different elements. The output symbols are then
fed into a parallel to serial converter, the serializer.

(0,0

Uy "V
©) SRR Y7
T :
=.
UQUT - - +_ . n_i. U(()I)U[SZ)UEI)UEZ) o
N
®
-
Do)

Figure 3.1: An encoder for a binary rate R = 1/2 convolutional code.

The number of input bits to the encoder at each time unit is equal to b. The input bits form
the information sequence

u=upuy... = ugl)ugz) e u(()b)ugl)ugz) e ugb) e (3.1)
In a similar way the number of output bits from the encoder at a time unit is equal to ¢ and
they form, after serialization, the code sequence

V=voVvy...= v(()l)v(()Q) e v(()c)vgl)v?) e vgc) e (3.2)
The rate R of the encoder is defined as R = b/c and it describes how much redundancy that
has been added. The encoder in Figure 3.1 has one input (b = 1) and two output bits (¢ = 2),
which means that the rate is R = 1/2.

The content of the shift registers is called the state, o, of the encoder and the number of
states equals 2. The state describes the past history of the encoder. For the encoder in
Figure 3.1, at time ¢, we have o, = u;—_1us—2, i.e., the state is the input bits which entered the
memory at the two previous time units. The current state together with the input symbols
are sufficient to determine the next state and the output symbols. A so-called state-transition
diagram can be drawn to illustrate this. It shows what the next state and the output will be
given a certain state and input. The state-transition diagram for the encoder in Figure 3.1 is
shown in Figure 3.2. As seen in Figure 3.2 there is a one-to-one correspondence between the
input symbol and the next state, given the previous state.

Figure 3.2: The state-transition diagram for the encoder in figure 3.1.

Some of the definitions for block codes are also applicable for convolutional codes. All convo-
lutional codes are linear. The Hamming weight and the Hamming distance are defined in the
same way as for block codes. The distance measure between two code sequences of a convo-
lutional code is called the free distance, defined as the minimum Hamming distance between
any two differing code sequences,

dfree = mindg (v, v'). (3.3)

v£V!

Example 3.1: Consider the encoder in Figure 3.1 and let the input sequence be u = 1100.
If the initial state is o9 = 00 then it follows from the state-transition diagram in Figure 3.2
that the state sequence is

1/11 1/01 0/01 0/11
0p0 — 010 — 011 — 001 — 000

and that the code sequence is
v = 11010111
|

The state-transition diagram can be extended to a trellis diagram by adding a time axis to
the state-transition diagram, see Figure 3.3. The trellis diagram can for example be used to

10

find the minimum distance or free distance of a code. Some decoding algorithms use a trellis
representation to decode convolutional codes [VOT9|.

0/00 WO/OO WO/OO
1/11

Figure 3.3: A binary rate R = 1/2 trellis structure for the encoder in Figure 3.1.

Now we introduce the delay operator D. Multiplying a sequence with D is equivalent to delaying
the sequence one time unit. This gives us another way of representing the information and
the code sequence, i.e.,

uD)=...+u_1D ' +ug+u D' +usD?* + ... (3.4)
v(D)=...+v_1D ' +vo+viD' +voD? +
where u; = uz(.l)uz(.z) e ugb) and v; = 1)2(1)1)2(2) e vZ(C).

We know that the there exists a linear operator which transforms the information sequence
into the code sequence, i.e., the encoder, which can be represented in matrix form as

v(D) = u(D)G(D) (3.5)

where G(D) is called the generator matriz. Obviously we need to be able to reconstruct the
information sequence, i.e., G(D) must have a right inverse. If the right inverse exists, the
generator matrix is called an encoder matriz.

Example 3.2: Consider the encoder in Figure 3.1. The generator matrix for the encoder
is

GD)=(14+D+D* 1+D?).

The output sequence v(D) = (v (D)v(?)(D)) of the encoder with generator matrix G(D)
can be written as

<
Z
S
I

u(D)(1 + D + D?%),

u(D)(1 + D?). (36)

<
S

)
I

A generator matrix G(D) is equivalent to another generator matrix G'(D) if the same code
sequence can be generated by rearranging the information symbols, i.e., G(D) = f(D)G'(D).

3.2 The recursive systematic encoder

In the previous section we discussed the convolutional encoder in general. In this section we
will describe a special convolutional encoder that is used in the turbo coding scheme. This
convolutional encoder is called recursive systematic encoder, see Figure 3.4.

et g L] |
0,07

.

Figure 3.4: A rate R = 1/2 recursive systematic convolutional encoder and its state-transition
diagram.

A systematic encoder has the property that the b information symbols appear unchanged
among the ¢ code symbols along with ¢ — b parity-check symbols. In Figure 3.4 the first
symbol of v; is the information symbol, i.e., v,gl) = uy, and the second, v,EZ), is the parity-check
symbol. Since the b information symbols appear unchanged in the code sequence and we can
always permute the columns in G(D), i.e., rearrange the order of the code sequence and still
obtain an equivalent convolutional code. Hence, we can write the recursive systematic encoder

as
G(D)= (1, R(D)) (3.7)
where Iy is the b x b identity matrix and R(D) is a (¢ — b) x b rational matrix.

Since the shift register has a feedback loop, it is called recursive. The feedback loop cor-
responds to the denominator in the R(D) matrix.

12

Example 3.3: The encoder in Figure 3.4 has the generator matrix

G)=(1 525)

1+D+D?

and it is equivalent to the encoder in Figure 3.1 since

G’(D):f(D)G(D):(1+D+D2)(1 LD):(1+D+D? 1+D?).

Another way of representing the encoder is to use the parity check matriz, H. This method
is suitable for describing turbo encoders and will be used in Chapter 5.1. A code sequence
satisfies the condition vH' = 0, where we call H” the syndrome former matriz. Since the
convolutional code word satisfies v(D) = u(D)G(D), then

v(D)H(D)" = u(D)G(D)H(D)" =0 (3.8)
and since u(D) # 0 in general we have

G(D)H(D)" =0 (3.9)

Example 3.4: To find the parity-check matrix H(D) for the encoder in Figure 3.4 or for
the equivalent encoder in Figure 3.1 we need to satisfy the condition G(D)H (D) =0

T 2 1—|—D2
GD)HD)" = (1 DD) (1+ D + D2) =0

This gives us

H(D)=(1+D? 1+D+D?)

The syndrome former matrix H(D)” can be expanded as
HD)" =H{ +HID + ...+ HL, D™, (3.10)

where H',0 <i < my, is a ¢ X (¢ — b) matrix and m; is the memory of the syndrome former,
which in general is not the same as the encoder memory m.

Combining (3.10) with the equality vHT = 0 we get
viHl +vi H{ + - +vip HL =0. (3.11)

For causal code sequences we have

HI HI ... HL
0T = Hy H{ ... Hp (3.12)

13

which is the semi-infinite syndrome former matrix.

Example 3.4 (cont.): The memory of the syndrome former is ms; = 2 and

Hy=(1 1)
Hi=(01)
Hy=(11)

The corresponding semi-infinite syndrome former matrix is

1
1
H" =

—_ == O
—_ O =
—

|
Using (3.11) we get the following semi-infinite equation systems
voHI =0
voH! +viHl =0
voHY +viHl +voHI =0
(3.13)

VOHZ;S +...+ vms_lHlT + vmsHOT =0
le,ﬂs oA Vo HY 4V, 1 Hf =0

Since the encoder is systematic we know that the code word v; consists of b information sym-
bols and ¢ — b parity-check symbols. The first vector equation in (3.13) gives us ¢ — b scalar
equations which can be solved by substitution, i.e., the ¢ — b parity-check symbols in vy can
be calculated. By using the next part of (3.13) we again have ¢ — b unknown parity-check
symbols in vy and ¢ — b equations which can be solved, etc.

The following example describes how the parity-check symbols are calculated and a way of
representing the state of the encoder.

Example 3.4 (cont.): Consider the same encoder again and the information sequence
u = 1100. The first parity-check symbol is equal to the first information symbol, i.e.,

v(()l) = up = 1. The second parity-check symbol v(()Q) is calculated by solving VOHSF =

1-11- v(()Q) =0= v,go) = 1. Next we calculate the state of the encoder which repre-
sents the past equations. The state is voH{ = 1 and voH2Z = 0. The next parity-check

symbol, U§2), is calculated using the state o = 10, and the information bit u; = Ug) =1, etc.

14

v
o) —1] 101
1 111
voH{ [o]1 0
1 1 01
v ———f0] 111
010 1 Next state
0 1 01
0 111
010
0 101
1 111
011
From the matrix above we see that the state sequence is
1/11 1/10 0/00 0/01

0p0 —> 010 —> 010 — 010 — 011

and that the code sequence is v = 11100001. This is the same result as we would get if we
used the state-transition diagram in Figure 3.4

15

Chapter 4

The interleaver

The interleaver is a device that rearranges, or permutes, the input bits in a predefined manner.
Ideally, two symbols that are close to each other in time in the input should be far apart in
the output. Normally an interleaver is used to transform burst errors, that can occur in the
coded signal, into single errors. A burst error is when several consecutive bit-errors occur. The
turbo coding scheme uses the interleaver to design a longer and more complex encoder. One
of the goals when designing interleavers for turbo codes is to re-map the information sequence
so that at least one of parity-check sequences always has a high Hamming weight. The design
of the interleaver is a very important part in the effectiveness of the turbo coding system.

Interleavers can be divided into two general classes, block interleavers, which we mainly will
discuss here, and convolutional interleavers. The difference between them can be described as
that a block interleaver takes a block of symbols and then rearranges them while the convo-
lutional interleaver continuously rearranges the symbols.

The opposite of the interleaver is the deinterleaver which takes interleaved sequence as its
input and produces the original sequence as its output.

4.1 Block interleavers

4.1.1 The “classical” block interleaver

The simplest interleaver is the “classical” block interleaver. It uses two memories with I rows
and J columns each. The input symbols are written row by row and then read out column
by column. The reason for using two memories is that we want to be able to read from one
memory while writing into the other. The delay of the interleaver is I x J.

Example 4.1: Consider the interleaver in Figure 4.1 and the input sequence x = zgx1 ... Z7.
First the symbols xg . .. z3 are written into the first memory of the encoder. When x4 is written,
zg is read and when x5 is written z» is read, etc. The output will be X' = xgzox 1732476257 7.

16

Zo T Tq s

T2 Zx3 e i

Figure 4.1: Two memories of a 2 X 2 block interleaver with the symbols x = zpz; ... z7 written
into it.
4.1.2 The pseudo-random block interleaver

In the pseudo-random block interleaver data is written into a memory in a pseudo-random
order and read out column by column. Here we also use two memories so that we can read
from one memory while we write to the other one.

Example 4.2: Consider the pseudo-random interleaver in Figure 4.2 and the input se-

xs3 Z2 Ty Te

z1 Zo Ty T4

Figure 4.2: Two memories of a 2 X 2 random interleaver with the symbols x = xgx1 ... 7
written into it.

quence X = zgx1...Z7. In the figure the symbols are written into the interleaver in a
pseudo-random way. Then they are read out column by column and get the output sequence
L3L1X2X0L7L5TeT4-

4.1.3 The multi stage interleaver (MIL)

The multi-stage interleaver (MIL), is a method used in the ARIB standard proposal [ARI9S|
to describe a pseudo-random interleaver using three rules. By combining the rules complex
pseudo-random interleavers can be described.

The first rule is
L[N x M].
It describes an N rows by M columns block interleaver with the size L. If L < M N the last

MN — L positions of the interleaver will not be used.

17

Zo z1

T2 Z3

Iq

Figure 4.3: The input symbols interleaved in a 5[3 x 2] interleaver.

Example 4.3: Consider the input symbols x = zgx1z2x324 and the interleaver defined
by the rule 5[3 x 2], see Figure 4.3. Since 5 < 3 x 2 the last position will not be used. The
symbols are written row by row into the interleaver. They are then read out column by column
and the output is xoxroxrsz1Z3.

The second rule,
R{A}
describes an interleaver that reverses the order of A input symbols.

Example 4.4: The input symbols x = xpxix97374 are going to be interleaved with the
interleaver described by the rule R{5}. The output is z4z3x2212¢.

The third rule used in MIL is
L[N1 x M1,N2 x M2,...],

which means that the first L input symbols should be permuted using an L[N1 x M1] inter-
leaver, the second L input symbols should be interleaved using an L[N2 x M2] interleaver, etc.

Example 4.5:
Zo I
Te T g
T2 T3
T9 | Tio | Z11
T4 | s

Figure 4.4: The first 6 input symbols written into a 6[3 x 2] interleaver and the next 6 symbols
written into a 6[2 x 3] interleaver.

18

Consider the input symbols x = zpx1z ... 211 and the rule 6[3 x 2,2 x 3]. The first 6 symbols
will be interleaved in a 3 x 2 block interleaver and the next 6 symbols will be interleaved using
a 2 x 3 block interleaver. The output iS ToXoT4T1X3L526L9X7L10LL 11 -

Now we can combine the three rules and get a multi-stage interleaver.
L[R1 x R2]

is a block interleaver with the size L where the row indices are interleaved using the interleaver
defined by R1 and the column indices are interleaved using the interleaver defined by R2. R1
and R2 can be a combination of any of the three rules above.

Example 4.6: The input sequence x = zoz1Z2 ... Zs is to be permuted with 7[R{3} x 3[2x 2]].
We start by interleaving the row indices, jojij2, with R{3}. The interleaved result is ja271Jo.
Then we expand the rule 3[2 x 2] and interleave the column indices, iyi172, which permutes
into ’ioig’il.

With i as column indices and j as row indices we write the sequence into a 3 x 3 inter-

leaver, see Figure 4.5. The symbols are then read out column by column and the output is
LTeL3XOL5L2L4T1 -

10 12 i

J2 L6

J1 r3 | x5 | T4

Jo To | T2 | Z1

Figure 4.5: The interleaved indexes i used as column indexes in a 3 x 3 block interleaver.

4.2 Convolutional interleavers

The difference between a convolutional interleaver and a block interleaver is that the block
interleaver takes a block of symbols and permutes them while the convolutional interleaver
rearranges the symbols continuously (cf. convolutional vs. block encoders). In Figure 4.6
a convolutional interleaver-deinterleaver pair is depicted. The interleaver consists of shift
registers of different lengths on the interleaver and deinterleaver side and multiplexors that
choose where the symbols go. All the multiplexors change position synchronously after each

19

Input

T
— T+ N
—TT1+—

symbol so that successive encoder outputs enter different rows of the interleaver memory. Since
the different rows have different lengths, different symbols will get different delays. The first
encoder output enters the top interleaver row and is transmitted over the channel immediately.
Then it enters the top row of the deinterleaver memory where it is delayed (I —1)j time units.
The second encoder output symbol enters the second row of the interleaver and is delayed
j time units on the interleaver side. Thus adjacent encoder outputs are transmitted j time
units apart and not affected by the same channel error burst. After passing through both the
interleaver and the deinterleaver, all the symbols have the same delay.

(L —1)j
J

—L I

: Output
Multi- _/ ED \

plexor

Figure 4.6: A convolutional interleaver and deinterleaver.

4.3 Matrix representation of the interleaver

The interleaver can be expressed as a matrix called a scrambling matriz or scrambler. If x is
the bi-infinite binary input sequence of an interleaver then the output y can be expressed as
y = x5, where S is the scrambler.

A bi-infinite matrix S = (s;5), 4,j € Z, that has one 1 in each row and one 1 in each column
and satisfies the causality condition

Sij = 0,2 <y (4.1)
is called a convolutional scrambler.

The identity scrambler has ones only along the diagonal. The output symbols will not be
permuted.

Example 4.7: Consider the block interleaver in Figure 4.7. Both memories of the inter-

leaver are shown in the figure. The input symbols are written into the interleaver row by row
in one of the memories and read out column by column from the other. When the fifth symbol

20

Figure 4.7: A 2 x 2 block interleaver.

is written into the second memory, the first symbol is read from the first memory and when
the sixth symbol is written, the third is read, etc. The scrambling matrix representation for
the interleaver is

23456789 10 11 12 13
1

n
I

© NSO W N~
—

The one at 2 = 1, j = 5 corresponds to the reading of the first symbol when the fifth is written
and the one at ¢+ = 3, 7 = 6 corresponds to that the third symbol is read when the sixth is
written, and so on. The empty positions denote zeros.

A random interleaver can be constructed, using a method by Jimenez and Zigangirov [JZ97],
by taking an n X n diagonal matrix and permuting the columns in a random fashion. This
way we will still have exactly one 1 in each column and one 1 in each row. Then we unwrap
the submatrix, which is below the diagonal, as shown in Figure 4.8. The unwrapped matrix
is then repeated indefinitely to form a scrambling matrix.

In Chapter 5.1 we will use the scrambler together with the syndrome former to describe
the turbo codes. For this we need some definitions.

A multiple convolutional scrambler is a bi-infinite matrix S = (s;5), 4,5 € Z, that has at
least one 1 in each row and one 1 in each column and that satisfies the causality condition
(4.1). Since there is more than one 1 in each row, the multiple convolutional scrambler not
only permutes the symbols, but it also makes copies of them. If all the rows have the same
number of ones, the scrambler is homogeneous.

21

Figure 4.8: A 5 x 5 matrix before and after unwrapping.

Consider the non-multiple scrambling matrices S(!) = (5(1)) and S = (5572)) The matrix
S = sWms® = (sy), i,jeZ

is called-column interleaved if

1
{ Si(24) = Sz('j)

Si(2+1) = S5

for all 4,5 € Z. This means that every other column in the matrix S comes from S™) and S
respectively.

Example 4.8: Consider the scramblers S(V) and S®), where S(!) is the identity scrambler.

.01 2 3 4 .01 2 3 45
0 1 0 1
1 1 1 1

SO =1 2 1 and S@ = | 2 1
3 1 3 1
4 1 4

To make S = SMMS?) we take column 0 from S and insert into column 2-0 = 0 in S.
Next we take column 0 from S and insert it into column 2-0+ 1 = 1 of S and so on. The
column-interleaved matrix § = SMMS?) is

0 02 1; 13 29 25 31 32 41 42 51 52

o 1 2 3 4 5 6 7 8 9 10 11
1 1

B wWw N =
—
—

22

The bold indices in the top row indicate which column of the matrices S and S@ the
columns in S come from.

If the input sequence of the convolutional scrambler consists of subblocks of ¢ binary symbols
and the output sequence consists of subblocks of d binary symbols (see Chapter 5.1), it is
convenient to divide the scrambler matrix into ¢ X d,d > ¢ submatrices S;;, 4,j € Z so that
S = (8ij). Since each column of S has one 1, the rows will have in average d/c ones. The
ratio d/c is called the rate of the scrambler.

Example 4.8 (cont.): The column-interleaved matrix S can be divided into submatrices
of size 1 x 2, where one column of the submatrix comes from S(!) and the other from S(2).
Thus the rate of S is 2/1.

We need one more definition to be able to describe the turbo code.

Consider the two matrices S(1) = (S’Z(Jl)> and S = (S’Z(JZ)> whose submatrices are of sizes
c1 X dy and cg X dg, respectively. The matrix

S=8Ums? =(S;), i,j €Z (4.3)
is called row-column interleaved if
Seie) =Sy
Seiej+ny =0 (4.4)
S@itne) =0
Seirneity =S

forall 4,7 € Z.

Example 4.9: Consider the column-interleaved scrambler (4.2) and call it SU). By row-
column interleaving it with two identity scramblers, S@ and S®) we get the rate 4/3 scram-
bler

0y 1; 02 03 27 31 1z 13 41 51 29 23 67 71 32 33 8 91 42 43

-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 1
1

[y
w

LU WN RO
—

The bold row indices show which matrices the rows come from and analogously, the bold
column indices show which matrices the columns come from.

23

Chapter 5

The turbo encoder

5.1 The turco encoder

In order to achieve high coding gains with moderate decoder complexity, concatenation has
proven to be an attractive scheme. A concatenated code consists of two separate codes which
are combined to form a large code. Concatenation of error control codes was first studied by
David G. Forney in 1966 [For66|. Classically, concatenation consisted in cascading a block
encoder with a convolutional encoder in a serial structure with an interleaver (see Chapter 4)
separating them. Typically the block encoder was used as outer encoder, to protect against
burst errors, and the convolutional encoder as inner encoder, to reduce the bit error.

A new scheme was introduced by a group of French researchers, Berrou, Glavieux and Thiti-
majshima in 1993 [BGT93]. They used a parallel concatenated scheme which got the nickname
turbo coding after the resemblance with the turbo engine. When the French researchers de-
coded a rate R = 1/3 turbo code with a so-called iterative decoding algorithm they claimed
that a bit error of 1075 could be achieved at a SNR of 0.7dB. This was initially met by the
coding community with much skepticism, but when the result was reproduced by other re-
searchers the community was convinced.

The turbo encoder is built up by two recursive systematic encoders and an interleaver, in a
parallel concatenated manner, see Figure 5.1. The first encoder takes the information sequence
and produces the first parity-check sequence, v(1). The second encoder takes the interleaved
version of the information sequence and produces the second parity-check sequence, v(2). The
two parity-check sequences together with the information sequence, v(0) = u, form the output
of the turbo encoder, i.e.,

V=vgVy...= U(()O)U(()I)U((E)UEO)UEI)UEZ) e

5.2 Parity-check matrix representation of the turbo encoder

A more general way of representing the turbo encoder is by using a parity-check matrix rep-
resentation. This representation can also be used to describe low-density parity-check codes
as described in [JZ98], in fact they show that turbo codes are special cases of low-density

24

Ut =

!
Q5

D

Interleaver J
+

X

Figure 5.1: A rate R = 1/3, systematic, parallell concatenated convolutional encoder.

parity-check codes.

Since each of the recursive systematic encoders can be described with a parity-check matrix
as described in Chapter 3.2 and the interleaver can be described with a scrambling matrix,
described in Chapter 4.3 we can combine these and construct a representation of the turbo
encoder.

We use the rate R = 4/3 row-column-interleaved convolutional scrambler in (4.5), designed
from two identity scrambling matrix S and S®) together with another scrambling matrix
S corresponding to the interleaver in the turbo coder. The scrambling matrix S transforms

(1), (2) (1), (2)

: , ;.) .
the input sequence (uv; "v;”’) to (ugugv; ‘v;~’) where wj is the interleaved version of u;.

We use a combination of two row-column interleaved parity-check matrices, with submatrices
of size 2 x 1 to design the combined parity-check matrix, HL.

1 0
1 1 1
1 0 1
1 1 1
HL = . 0) (5.1)
1 1 1
1 0 1
1 1 1

25

(1) (2)). To make it corre-

which corresponds to a parity-check matrix with inputs (ug, v, uj, v

spond to (ut,u;,vﬁl),vg)) we swap row 2 and 3, 6 and 7 and so on. We obtain

1 0 1
1 0 1
1 1 1
, 1 1 1
HT =) 0) (5.2)
1 0 1
1 1 1
1 1 1

We can now design a parity-check matrix which describes the complete turbo encoder by
multiplying S with the combined parity-check matrix H, g to get

H! = SH! (5.3)

Where HJ is the total parity-check matrix of the turbo encoder.

26

Chapter 6

Iterative decoding

6.1 General principles

This section describes a decoding method called iterative decoding. Iterative decoding is the
preferred decoding method for the turbo coding scheme as simulations show that a remark-
ably good performance can be achieved, close to the Shannon limit, despite the relatively low
complexity of the iterative algorithm.

Aemt(Z)
Deinterleaver !
A:xt(l)
— APP1 Interleaver |-® APP 2 | —= Decision 4A§2)(N)
r2)
LD
r(0) Interleaver

Figure 6.1: Iterative decoding procedure.

The fundamental idea of iterative decoding is that two or more a posteriori probability (APP)
decoders exchange soft information, see Figure 6.1. One of the decoders calculates the a pos-
teriori probability distribution of the information sequence and passes that information to the
next decoder. The new decoder makes use of the information and computes its own version
of the probability distribution. This exchange of information is called an iteration. After a
certain number of iterations, IV, a decision is made at the second decoder. For each iteration
the probability that we decode in favour of the correct decision will improve.

Let

r=rory... = r(()o)r(()l)r(()Q)r§0) e (6.1)

denote the received sequence corresponding to the code sequence generated by the turbo
encoder in Figure 5.1 and let r(;) denote the sequence of received symbols corresponding to

27

the information sequence u ezcept the received symbol Tgo), ie.,

rSZO) £ 7“(()0)7“50)7“9) e TEE)N"ﬁ)l e (6.2)
Now let
71(0) < Puy = 0) (6:3)

denote the a priori probability that the information symbol u; = 0.

Each iteration of the iterative decoding algorithm is executed in two phases. Let W,El) (i), I =
1,2,4=1... N denote the a posteriori probability, P(u; = O|r[g), which is obtained in the
[th phase of the ith iteration.

In the first phase of the first iteration, the first a posteriori probability decoder uses the
a priori probability 7;(0) and the received sequences r(® and r() to calculate the a posteriori

probability, ng)(l) = P(u; = 0|r®r(D)). This can be rewritten as

where we have separated the dependence on T,EO). Since the channel is memoryless by assump-

tion P(r£0)|ut = 0) does not depend on the a priori information and P(rsyo)r(l)|ut = 0) only

depends on a priori probabilities P(u; = 0) for j # t.
Analogously we define the a posteriori probability that u; = 1 as

), _ _ 0) (D), —
P = 1)(1 — 1, (0)) P =1
Py = 1r@rWy =1 - 7{V(1) = (ri Jue = (A = m(O) Plry w7 e = 1) (6.5)

Let A,gl) (1) denote the ratio of the a posteriori probabilities for the information symbols after
the first phase of the first iteration.

AP = (6.6)
L —m (1)
Combining this with (6.4) and (6.5) we get
0
A0 — ™0 Pru, = 0) Py Ol = 0) 6
t L=m(0) P(r}u, = 1) P e W, = 1)
The ratio
7 (0)

28

is the likelihood ratio of the a priori probabilities. In practice we often have m;(0) = 1/2 which
gives A;(0) = 1. The ratio

e PO, =0
Aint = —(Tio)mt) (6.9)
P(ry7 |uy = 1)
is called the intrinsic likelthood ratio for the information symbol u;. Since we use BPSK-
modulation over the AWGN channel we can calculate this as

—(r{? - VEs)?

1
it PO =0) _ e el !
= OIE s ¢ - (6.10)
P(ry " |ug = 1) 1 Zl o)
VNor ¢ 7

The intrinsic likelihood ratio does not change for a certain symbol during the iterations.

The last part of (6.7) is called the extrinsic likelihood ratio for the first phase of the first
iteration, i.e.,

©0) (1)1, —
Aemt(l)(l) _ P(rl rl)|ut =0) (6.11)
t P (0) (1) -1 -
(), rMu, = 1)
Thus we can rewrite (6.7)
AP (1) = A (0) AP A D (1) =0,1... (6.12)

which is the outcome of the first phase of the first iteration.

During the second phase the a posteriori decoder calculates the likelihood ratios for the in-
formation sequence based on the interleaved version of rgo) and on the received sequence r§2)
corresponding to the second parity-check sequence. If the interleaver is sufficiently large, the
interleaved version of r'") will be independent of the non-interleaved one used in (6.11). The
decoder also exploits its knowledge of the likelihood ratios obtained from the first phase. Since
the a priori likelihood ratio A;(0) = 1 and the second decoder adds the intrinsic likelihood
ratio to its output we only use the extrinsic likelihood ratio, A1) (1), from the first phase
as a priori input to the second phase.

The output from the second decoder is

AP (1) = A (O AP AT (A D (1), e =0,1,... (6.13)
where
0).(2)1],, _
P, ' r'“u, =0
AL (1) = (4 fue = 0) (6.14)
P(r;)r(2)|ut =1)
Then, in the same manner, we use the extrinsic information, Afm(Z)(l), from the second phase

of the first iteration as the a priori information to the first phase of the second iteration. As
ouput we have

AM(2) = A 0) A AL (1) AT (2). (6.15)

29

After N iterations we make a decision based on the output from the extrinsic information from
both the decoders together with the intrinsic information and the a priori information.

AP(N) = Ay (0)APEAC D (YA D (N 1 =0,1,... (6.16)

If A§2)(N) > 1.0 then we decode 0 and otherwise 1.

In the following sections we consider two different algorithms for a posteriori probability de-
coding, i.e., the two-way and the one-way algorithms. In contrast to the popular Viterbi and
sequential decoding algorithms [JZ98] the APP decoding algorithms has not been used much
in practical application because of their high complexity and long decoding delay. The Viterbi
algorithm is a mazimum-likelihood (ML) decoding algorithm for convolutional codes and its
output is the most probable transmitted code path. It cannot provide us with information
on individual bit error probabilities for the different information bits. The APP decoder is a
mazimum a posteriori probability (MAP) decoding algorithm which minimizes the bit error
probability.

P(ugk) =0)
k
Tt Ut Tt P(U’E : = 0|r[0:t))
— Encoder Channel APP decoder —

Figure 6.2: A digital communication system with APP decoding.

The purpose of the APP decoder is to find the a posteriori probability for each information bit
given the a prior: probability and the received symbols rg), see Figure 6.2. In the following

subsections we assume that the a priori probability P(ugk) =0) = 1/2, i.e., the binary encoded
bits are equally likely.

6.2 The Two-way or BCJR-algorithm

The two-way algorithm is the most celebrated APP decoding algorithm for terminated con-
volutional codes and it is often called the BCJR algorithm in current literature after the
inventors Bahl, Cocke, Jelinek and Raviv [BCJR74].

By terminated convolutional codes we mean that the information sequence is divided into
blocks of length n and these blocks are followed by m dummy symbols which return the
encoder to the zero-state. This means that we always start and end the decoding in the zero-
state. The number of dummy symbols, m, is the size of the encoder memory.

Example 6.1: Consider the recursive systematic encoder in Figure 6.3. Assume that we
want to encode a block of length n = 4 binary information bits, e.g., u = 1000. To return
the encoder to the zero-state we need to add two dummy bits ugymmy = 11. We start in the
zero-state and visit the following states:

Ut

ol
(=L

Figure 6.3: A recursive systematic convolutional encoder.

If the encoder was non-recursive we would just add zeros as dummy symbols since, in that
case, the input symbols are shifted directly into the memory.

The two-way algorithm calculates the a posteriori probability P(u; = 0|r[;44m)), which can
be rewritten according to Bayes’ rule in probability theory
(k)

k P(u = 0, r[o,ner))
Plu)” = Ol onm)) = ZP(lr[o ntm))

(6.17)

The numerator is the joint probability that the sequence rjg ;) is received and that the

symbol ugk) is zero, given that the transmitted sequence is a code sequence. The denominator
is the probability that we have received rjg, ., given that the transmitted sequence is a

code sequence. Equation (6.17) can be expressed by conditioning on the information sequence
Uo,n),

A Douomett® L E0m4m) [Wo,n) P (Uj0,n))
P(UE)ZOIr[o,n+m))= R i=0...nk=1...b

2 ugomyelhio.ny L (T[0,n4m) [W0,n)) P(Wo,n))

(6.18)

where Z/l[(ok?z)i is the set of information sequences that have uz(-k) = 0 and Uy, is the set of
all information sequences. The information bits and the state-transition in the encoder has a
one-to-one correspondence as discussed in Chapter 3.1. We define Sjg 5,4, as the set of state

sequences such that we start and end in the zero-state

def
S(0,n+m) = {o0,n4m) = 0001 -+ . Onym|00 = Onim = 0} (6.19)
and S[([fjwm)i as
def
S[([;C,L«Fm)z :e {U[O,n—l—m) =0001--. Un+m|UO = Un+m - 0, o; — O'i+1 = ’U,Ek) = 0} (620)

which is the set of state sequences that start and end in the zero state and where the state

(k)

transition from state o; to ;11 corresponds to u;”’ = 0. We can now rewrite the a posteriori

31

probability once more

P P
P k) 0 B U[Oan+m)es[((;c,)n+m)i (r[O,n+m)|U[0,n+m)) (G[O,n—l—m)) def ,),Z(k) o1
ZU[O,n+m)ES[O,n+m) (r[O,n—l—m) |o'[0,n+m)) (U[O,n-i-m)) Y

where P(r[n1m)|F[0,n+m)) is the probability that rjg 4, is received, given that the code cor-
responding to the state transitions &g, 4.,) was transmitted and P(U[07n+m)) is the a priori

probability of the state sequence oo 1 y). The numerator 'y-(k)

(2
that correspond to the state sequences S[((i ZL +m)i

probabilities corresponding to S pm)-

is the sum of the probabilities

and the denominator < is the sum of the

A more easy-to-grasp way of representing (6.21) is by using a matrix representation. Let
P, denote the 2™ x 2™ state transition matrix

P = (pt(aa UI))U,U’ (622)
where 2™ is the number of states and
pi(o,0") = P(ry, 0041 = 0'|oy = 0) = P(ri|oy1 = 0’ 00 = 0)P(0441 = 0'|loy =0) (6.23)

and 0,0’ € 0...2™ — 1. Since there is a one-to-one correspondence between the state transi-
tions and the information sequence

1/2°, if ¢ — o’ is possible

0, otherwise (6.24)

P(oyy1 =d'|loy=0) = {

assuming P(uz(-k) = 0) = 1/2" and b is the number of input bits. This means that the state
transition matrix P; is sparse as some of the matrix elements are zero.

Example 6.2: The recursive systematic encoder is Figure 6.3 with m = 2, has a sparse
state-transition matrix with following appearance.

p¢(0,0) 0 p:(0,2) 0

P, = pi(1,0) 0 pi(1,2) 0
0 pi(2,1) 0 pi(3,2)
0 pt(3,1) 0 p(3,3)

For example the state transition oy — o1 does not exist = p;(0,1) = 0.

||
Since BPSK-modulation is used over the AWGN channel we have
) € N(£V/E;, v/ No/2)
which results in the metric
¢ () —ufDy?
P(roy=0,001=0")=][e ™ (6.25)

=1

32

where ¢ corresponds to the number of code symbols, in our case ¢ = 2, and wgi) € {VEs;,—VE;}

corresponds to the noise-free version of the received signal, when the code symbol U,EZ) € {0,1}
was generated by the state-transition o — o”.

Let ey be a 2"-dimensional row-vector with a 1 in the first position and zeros in all the
other positions, i.e.,

ep = (10...0). (6.26)
This corresponds to o9 = 0. Consider the product
60POP1 e Pn—l—m—l = (’}/0 e 0) (627)

where the zeros in the 2™ — 1 positions comes from the fact that we terminate the sequence

to the zero-state. The 7 value obtained in (6.27) is the same as that in (6.21). In order
(k)

to calculate the denominator of (6.21), ~,

transition matrix

, we introduce, as a counterpart to P;, the state

k k
PY = (p{(0,0")) 5 (6.28)
where
ng)(UaUI):P(Tt,UtH ZU',UEk) =0loy =0) = (6.29)
P(riop1 =o' 0y = o, ugk) = 0)P(0441 = o'|oy = o, ugk) = O)P(ugk) =0).

The matrix element pgk)(o, o') is the conditional probability that we at depth ¢ receive the c-

tuple r;, that the encoder makes the state transition from o to ¢’ and that the kth information

(k)

symbol corresponds to u; = 0. In a similar way as in (6.27) we have
nP... P PPP,, . P = (y%o...0 6.30
€ol oL ... 15117 i+1 - 'ndm—1 (77,) ()
where 'yi(k) is the conditional probability that we receive rg ;) given that a code sequence

(k)

i

(k)

= 0 was transmitted. The calculation of fyik

the algorithm. To calculate 'y.(k)

)

corresponding to u is the most crucial part of

, 1 =20...n—1 we need the following n equations
ePP'PP,.. P, 1Py . Pop1 = (3P0...0)

eoPs PPy PPy Prymet = (+\P0...0)

eoPo PP . PPy Py = (P0...0) (6.31)

ePyPPy... PP\ Py . Pyt = (v,0...0)

To be able to calculate the n equations efficiently we split the equations in two parts. The first
part contains ey Py P, ... P;_1, and the second part contains Pi(k)Pi +1...FPyym—1- The name
two-way implies that decoding is done in two directions; first the first part of the equations are
calculated in the forward direction and secondly the second part of the equations are calcu-
lated in the backward direction. The two parts are then combined to get the appropriate result.

33

In the forward direction we start at the root (ep) and define the forward or a-metric

o Y (i (0)a; (1) ... i(2™ — 1)) = egRyPy ... Py, 1 <i<n—1 (6.32)

By convention we let g = eg. For each depth 7,2 =1...n—1 the a; components are stored.

To be able to use a recursive scheme in the backward direction, the second part of the equations
are calculated starting at the terminal node at depth n 4+ m. Since the codes are terminated
we know that we end in the zero-state at depth n + m, corresponding to ey. Since we go in
the backward direction the P matrix has to be transposed. We define the ﬂ(k)—metric

8P = (80P)... g0 @ - 1)

(6.33)
= &Pl Plys - P (P 0<i<n 1<k <b
Using the o and ﬂ(k) metric we can calculate
2m_1
1= ai@)8(0),0<i<n (6.34)
o=0
and
¥ = an+m(0) (6.35)
By combining (6.21) with (6.34) and (6.35) we obtain
am 1 k)
P = 0frp i) = 2ig=0_ il ("),0 <i<n,0<k<b (6.36)
An+m(0)
Example 6.3: Let us calculate the a posteriori probability, P(ugk) = 0lrjo,n4m)), 0 <@ <,

for the rate R = 1/2 binary encoder in Figure 6.3 in combination with BPSK-modulation and
the AWGN channel. Let SNR = 0 dB and, for simplicity, we let the symbol energy be Ej, = 1.
The received sequence can be found in Table 6.1. Since the encoder only has one input k£ = 1.

t 0 1 2 3 4 5
T,El) -3.5381 | 0.538998 | 0.396592 | 1.04663 | 0.132651 | 0.566748
r,EZ) 1.41079 | -0.0866733 | -1.11526 | 1.60251 | 3.56685 | -0.879046

Table 6.1: The received sequence, r = r(()l)r((f)rgl) ... at SNR = 0 dB over the AWGN channel
with BPSK modulation.

Combining F; = 1 and SNR = 0 dB gives Ny = 1 which can be used to calculate (6.25).

P(r o1 = o',0, = 0) can be found, for the different possible code symbols v; at time ¢, in
Table 6.2.

34

0 1
9.87-10~* [0.628
1.50-1073 | 0.705
0.11 0.306
0.017 0.344

2
0.199
0.882
0.117
0.520

3
0.885
0.105
0.219
0.026

4
0.087
7.45.10 7%
0.073
6.25-10~4

)
0.230
0.935
0.136
0.439

Vi
00
01
10
11

Table 6.2: The possible values of P(r¢|oy11 = ¢',04 = o), depending on which sub-block, vy,
the state-transition o — ¢’ corresponds to.
Now we can design the state transition matrices by using the metric in Table 6.2.

mt(OO)P()
mt(ll)Pl

my(11) Py
m(00) Py
0
0

0

0
me(01) P,
my(10) P

P, (6.37)

where my(v;) corresponds to the P(r o1 = o',04 = o) in Table 6.2. Py corresponds to the
a priori probability P(u; = 0) = 1/2 and P; corresponds to P(u; = 1) = 1/2. We can now

calculate the e and ng) metric as described in (6.32) and (6.33).

(o7
ap
Qg
o3
QY
a5
Qg

NN N AN N S

e N N N N S

1
4.934.10~4
1.550-10~4
3.503-1074
1.721-104
7.456-1076
5.747-1076

0.1447

6.265-1073
2.773-1073
2.867-1074
9.084-10°
6.320-1078

0

0
1.289-1073
1.314-1073
2.957-107°
2.126-107°

0

0

0
3.524-1073
9.191-1077
6.810-1075
3.333-1077

35

0
8.415-1073
8.483-107°
1.687-10~4
5.861-10*

0

0

0

0
4.270-1076
4.991-1076
5.609-10~4
3.817-1078

0

0
2.968-1073
2.117-10~*
3.204-107°

0

0

0
8.172-107°
2.360-10°6
1.589-1073
2.639-1074
8.860-107°

— N N e e e

~— ' ' ' e

From the o and ﬂgk) metric can now «y and 7(k) be calculated from (6.27) and (6.30). We get
the following result

v =5.747-107°
Y = 6.320-10"¢
V) = 4.765.1076
WY = 4.764.1076 (6.38)
WY =5.602-10°
7Y = 1.078-10~°
7Y = 1.079-10°

which gives us

P(u{") = 0) =0.0110
P’ = 0) = 0.8290
Pl =0) = 0.8289
Pl =0) = 0.9747 (0:39)
P =0) =0.1878
Pul") =0) =0.1878
which is decoded to u = 1000
| |

We can use the fact that the P, matrix is sparse and describe the matrix multiplication in
(6.27), in a more efficient way, using a trellis description. Each multiplication is equivalent to
moving a time step in the trellis. To calculate both the e and 3 metric we need two different
trellises, one in the forward direction and one in the backward direction. We introduce the
trellis multiplicative metric p;(o) in the forward direction and fi;(o) in the backward direction.
In the forward direction we start in the zero-state, i.e.,

1o(o) ={ Loo=0 (6.40)

0, otherwise

which corresponds to e in (6.27). The forward metrics for the depth ¢ up to n 4+ m is then
calculated as

pe(o') = Z pe—1(0)pt—1(0,0") (6.41)

o—a’

where o are the states that has a possible state-transition to ¢’ in the trellis. This corresponds
to the non-zero elements in the P, matrix. Thus we see that the trellis metric in the forward
direction corresponds to the a-metric described earlier.

36

In the backward direction we start at depth n 4+ m in the trellis, in the zero-state, i.e.,

%wvz{L =0 (6.42)

0, otherwise

We then move backward in the trellis until we have reached depth 0 in a similar way as in the
forward direction.

pilo) = > fui(0)pi(o,0") (6.43)

oc€o—o’

As the forward metric corresponds to the a-metric v can be found in the trellis as

Y = tntm(0). (6.44)

'yz.(k) can be obtained by

2m 1) (2m—1

()
1= X om0) (6:45)
o=0 =0

Example 6.4: Let us calculate the a priori probability for the same received sequence as
in the previous example, shown in Table 6.1, by using trellis description. First the state-
transition metric, p;(o’, o), has to be calculated. This is done in the same manner as before
and it is shown in Table 6.2. Now we can design the trellis in the forward direction by using
(6.41). The resulting trellis is shown in Figure 6.4. The metric in the trellis is the same as the
a metric in the previous example. In the same way we can calculate the backward metric.

1.000 4.934-10-% 1.5504.10~% 3.503-10—% 1.72:10~% 7.45647-10-% 5.74773.10~6
[00 | 00 }—— 00 - 00 - 00 }—— 00 |—— 00 |

1.289-10~2 1.313-10—2 2.957-10~2 2.126-10~2
| o1 | | o1 | | o1 | | o1 |

| 10 | | 10 | | 10 | 10

8.415-103 8.483-10~5 1.687-10—4 5.86-10—4

[11 | 11 | | 11

2.968-10—3 2.117-10—4 3.204-105

Figure 6.4: The forward metrics are written next to the corresponding states.

The resulting trellis is shown in Figure 6.5. The v and 'yz-(k) can now be calculated and they
are the same as before.

37

5.7473-10~% 6.3203-10-% 9.0836-10~% 2.867-10~% 2.7734-10°3 0.1447 1.000
| 00 — 00 | [00 | [00 | [00 | [00 | [00

9.1907-10~ 3.524-10~ 2 0.2195
| o1 | | o1 |

[10 |
3.8167-108 4.9913-10~ 4.27-10~6

11 | [11

2.634.10~% 1.1589-10~3 2.3593.10~6

Figure 6.5: The backward metrics 3(o) are written next to the corresponding states.

6.3 The One-way Algorithm for APP Decoding

The one-way algorithm was independently invented by Trofimov [Tro96] and Zigangirov |[Zig98|.
We use Zigangirov’s version of the algorithm as described in [JZ98]. This algorithm is a
forward-only algorithm and it can be used on non-terminated codes, as opposed to the two-
way (BCJR) algorithm described in Section 6.2. The algorithm is recursive and it uses a
sliding window of size 7, i.e., in order to calculate the a posteriori probability for ugk) = 0 the
receiver has to reach the depth i + 7. Analogously to (6.21) we have

P(r[O,i-I—T)? ’U,Ek) = 0)
P(rp,i+r))

P@® = 0lrgi1m) =

soisriest), D000 P@pien) o ®
— ’ i +T]e s ZT,ISka,
2 o0,itrlesio) Foitn)|o0itr) P(T0ita) Yitr
(6.46)
where Sjg ;) is the set of state-transition sequences og ;) such that og = 0, and S[((f Z)i is
the set of state-transition sequences oy ;] such that oo = 0 and the transition from state o;
to state g;41 is caused by ugk) =0, i.e.,
def
S[O,Z-Jrﬂ = {0[07i+7] = 0001 ... UZ'_|_7—|UO = 0} (6.47)
and
k def k
5[(0,2+T}i = {o0,i1r] = 0001 ...0itr|o0 = 0,07 = 0511 = ug) = 0}. (6.48)

Note that we do not know in which state we end, as we do when we decode a terminated
sequence with the two-way algorithm. P(rp47)|0[0,i4-) is the probability that rjg, . is
received, conditioned on that the code sequence generated by the state sequence oy ;1] is
transmitted and P (oo ;4-]) is the a priori probability of the state sequence g ;1r)-

38

Now let
dof 2m—1
Vigr = iyr(0) (6.49)

o=0

where a;4-(0) is given by (6.32). Let

ol = (aggm)agg(l) o) (om 1)) “eoPyPr... P PPPLy . Py (6.50)

where P; and P*) are given by (6.22) and (6.28). Let

2m 1
def
ner E Y ol o). (6.51)
o=0
Now we can write (6.46) as
) g
P(u;”" =0rp,iyr) = T (6.52)

Yi+T

In order to calculate y(k)

i+ and ;1 we use a recursive scheme. For ;. it follows from (6.32)
that

(8 7] =€y
6.53
{ Qitrt1 = Qi Piygr. ()

This together with (6.49) makes it possible to calculate ;4.
(k)

In order to calculate ..’ we introduce

k k k k m
az('j) = (az(j)(o)az('j)(l) az('j)(2 - 1)) (6.54)
eolyP... P PP . P j—T<i<j—-1,1<k<b.
Let
(1)
(3
al?
Aij=| 7 |-7<i<i—1, (6.55)
o

ij
be a b x 2™ matrix and let A be a b(7 — 1) x 2™ matrix whose entries are the matrices

Ay, t—17 <i <t

At77'+1,t

At—7‘—|—2,t

Ay = (6.56)

A1y

39

Example 6.5: Suppose that m =2,b=1,c=2 and 7 = 3. Since b = 1 the A;; matrix will
)

only contain e;;”. The A; matrix will have the following appearance

J
1
At _ angt _ e0P0P1 e Pt(i)2Pt_1
agl_)l,t e0P0P1 ce Pt_QPt(_l)l
The vector oy is

[s T e0P0P1 N Pt—ZPt—l-

|
From the previous equations it follows that
Apmri1t41
AP, = Atf'rJ‘rZ,tJrl (6.57)
Ap144+1
Now we calculate
Oétpt(l) ag,lt)+1
2) (2)
A = auP® = | S0 [=] S| (6.58)
o P, t(b) agt)ﬂ

In order to get A;41 we first remove the top matrix A;_;41 41 from Ay P; and save it for later
use. Then we shift all the other A-matrices up one position and insert A;;4; from (6.58) in
the empty position. We get

Ap—ri2,t41

Ay 713441
Mgy = | . (6.59)

At i1

The rows of the matrix A;_; 11 441, which we removed from A, are the vectors agli)l, 1<k <hb,
defined by (6.50). They are used together with a1 to calculate the a posteriori probability

k k
P(Uﬁf)fﬂ = 0lrp,441)) = 7§+)1/’Yt+1

Example 6.5 (cont.): If we want to calculate Ayy; we start by multiplying the A; matrix
by F;, getting

[epyP,... PP\ P,
AtPt = (1) .
60POP1 e Pt—QPt_1Pt

40

Then we remove the top row and shift the other up one position. We then calculate
1 1
At,t+1 = atPt() = e0P0P1 . Pt,QPtflpt()

and insert it into the empty position in A. This gives us the new matrix

o _ [eoPPi PP P
t+1 — (1) .
e0P0P1 . Pt,QPtflpt

(k) _

Example 6.6: Assume that we want to calculate the a posteriori probabilities, P(u;,’ =
0|r[07i +T)) using the one-way algorithm for the same encoder and received sequence as in
Example 6.3 and let 7 = 2. The received sequence can be found in Table 6.1. The matrices P,
and Pt(l) can be calculated the same way as in the Example 6.3 with the metric in Table 6.2.
To decode the first information symbol, ug, we need a; and A,. First we initialize A to

ar=(ep) = (4934107 0 0 0)
and
a; =eyPy = (4934100 0 8.415:107 0)
Then we can start the decoding procedure by multiplying A; and oy with P;
AP = (eV Py) —(11.550-10% 0 8.483-107° 0)
and
as =eyPyPy = (1.550-107% 1.289-107% 8.483-10°5 2.968-1073)
Then we calculate A; 5 corresponding to (6.58)
Arp =eoPy PV = ((1.550-1074 0 0 2.968-1073)
and insert it into Ay Py corresponding to (6.47)
Ay = (e Py P) = (1.550-10* 0 0 2.968-10)
(k)

Then we can calculate the a posteriori probability from ey and ay’, which we removed from
Al Pl, i.e.,

2m—_1 (1)
P(u() = 0|T[0,2)) = w =5.333-102 (660)
EUZU aQ(U)

Then we calculate Az in the same way and so on. We get the following a posteriori probabilities

P(Ul == 0|T’[0,3)) =0.7526
P(uz = 0|rp4)) = 0.7687
P(Ug == 0|T’[0,5)) =0.9184

which will be decoded to u = 1000 which is the same as in Example 6.3.

41

Chapter 7

Implementation of the iterative
decoding algorithm

This section describe how our simulation programs were designed. Since the two-way algo-
rithm uses terminated codes and the one-way algorithm uses non-terminated codes and needs
to be 7 symbols ahead, the implementation of the two algorithms are quite different.

Important parameters when designing a mobile communication system are the delay of the
decoder, the complexity of the algorithm and the memory consumption. These parameters
will also be discussed.

7.1 Iterative decoding using the two-way algorithm

Since the code sequences decoded by the two-way algorithm are terminated, it is suitable to
decode one block of n information symbols at a time. Figure 7.1 shows a flowchart how each
block of received symbols are decoded.

First we start with initializing the likelihood ratio, A;(0) = 1 assuming that P(u; = 0) = 1/2,
fori=1...n.

Then we use the two-way algorithm to decode a whole block of n symbols, such that we
get n a posteriori likelihoods as output. We use a trellis implementation as described in Chap-
ter 6.2. To avoid using the intrinsic likelihood ratio and the a priori likelihood ratio twice,
we extract the extrinsic information by dividing the a posteriori likelihood by the intrinsic
likelihood and the a priori likelihood ratio.

The extrinsic likelihood ratio is then interleaved together with the information sequence.

The extrinsic likelihood ratio from the first decoder is used as a priori information to the
second decoder, which calculates its own version of the n a posteriori likelihood ratios. These
are divided by the a priori likelihood ratio and the intrinsic likelihood ratio to get the extrinsic

likelihood ratio.

To use it in the first decoder we have to deinterleave the extrinsic likelihood ratio, which

42

Let
A4(0) =
Iteration < N The block is finished
Yes No
Decode with T
first decoder
‘ Deinterleave
Extract T
extrinsic likelihood
1 Extract
extrinsic likelihood
Interleave f
Decode with
second decoder

!

Figure 7.1: The flow of the iterative decoding of one block of symbols.

is then fed into the first decoder.

After N iterations, a decision can be made based on (6.16). The process is then repeated
for the next block of symbols.

To avoid numerical problems we had to limit the output likelihood ratios and normalize the
a and ﬂgk) metric.

7.2 Iterative decoding using the one-way algorithm

In the one-way implementation of the iterative decoding algorithm we used a totally different
scheme. Since the one-way algorithm is used on non-terminated codes, it is possible to use a
pipeline structure of the decoder. Pipelining enables us to use several consecutive decoders
to do parallel work on different data bits. A pipeline works much like an assembly line, i.e.,
when one decoder has finished decoding its data it passes the result on to the next decoder
and continues to decode the next data input.

The one-way decoder needs the a priori likelihood ratio for symbol 7 + 7 from the previ-
ous decoder to produce the a posteriori likelihood for symbol 4, thus there is a delay between

43

the decoders. The 7 likelihood ratios are interleaved and therefore the delay between the
decoders depends on where those 7 likelihood ratios are placed in the interleaver.

Example 7.1: If we use the 4 x 4 block interleaver in Figure 7.2, where the indices are
in the order which they are written to the interleaver. With 7 = 2 we have to wait for Ag
before we can decode the first symbol of the interleaved sequence.

In the 4 x 4 random interleaver in the same figure we have to wait until A5 is written
into the interleaver before we decode the first symbol. Thus we have to wait for the whole
interleaver to be full.

Input ——| Ag | Ay | Ay | As Aol As | A7 [Ays
Ay | As | A | A7 Ao [Ara| Ay | Ay
Ag | Ag | Ao | A1 Ais| Ag | As | A
Avg [Arz | Ara|Ass Ar| As | Ao [Aro
Output Output

Figure 7.2: Likelihood ratios in a 4 x 4 block interleaver (left) and a random interleaver (right).

Since the delay can vary between 7 and the size of the interleaver we decided to always use
the maximum delay, i.e., we decode block-wise where one block has the size of the interleaver.
This is not necessary since it is possible to calculate the actual delay of the interleaver and
then decode symbol-wise.

The data flow in the decoding process is shown in Figure 7.3. The first decoder starts to
process one block of data, with the a priori likelihood ratio A;(0) = 1. The output a posteriori
likelihood ratios are then divided by the a priori likelihood ratios and the intrinsic likelihood
ratios the same way as with the two-way algorithm to produce the extrinsic likelihood ratios.
Before the second decoder can start decoding its first block of data, the first decoder has to
decode the next block to produce the extrinsic likelihood ratios needed. Then the second de-
coder can start to decode a block of data. In Figure 7.3 the numbers in the boxes correspond
to the order in which the decoders can start decoding a block of data and the arrows show
where the likelihood ratios come from.

7.3 A comparison between the one-way and two-way algorithm

Since most of the time is spent in the a posteriori decoders, it is essential to minimize the
complexity of those. It is the same for both encoders.

The complexity calculation of the two-way and the one-way algorithms, for each block of
n symbols, can be divided into the following parts

44

Block number

1 2 3 4

1 iteration, 1 phase 1 2 4 7 oo
y
1 iteration, 2 phase 3 5 8 |--mem
y
2 iteration, 1 phase | 6 9 |-
y

2 iteration, 2 phase | 10 }----=

Figure 7.3: Datapath for the pipeline structure.

e (Calculating the state-transition metric.
e (Calculating the a and 3 metric or respectively the A matrix.

e Calculating the vy and ygk)

i .

The complexity of calculating the state-transition metric is high, since it involves an e oper-
ation.

When calculating the e and @ metric or equivalently move through the trellis in the two-
way algorithm we have to do 2 multiplications and 1 addition for each state and for each
symbol, i.e., 2---n - 2™ multiplications and n - 2™ additions.

The complexity of calculating the A matrix in the one-way implementation is somewhat higher.
For each time step we have to do 7 matrix multiplications. This gives us 7/2 times the com-

plexity of calculating the a and 3 metric.

Calculation of the extrinsic likelihood ratios can be done directly by a method described
in [JZ98] and de/interleaving does not involve any arithmetic.

This is done 2N times as we have 2N decoders.

The memory consumption is relatively low for the two-way implementation compared to the
one-way implementation.

45

Since we decode a block at a time with the two-way algorithm, we need to save all the received
symbols for that block, i.e., 3n symbols. Between each iteration we need to save the likelihood
ratios in the interleaver and the deinterleaver, i.e., 2n symbols. The two-way algorithm itself
needs to temporarily save the a-metric as described in Section 6.2, i.e., 2™n symbols. We do
not need to save the ,Bz(k) metric since we directly can calculate the a posteriori probability
for each time step. The total memory usage is thus 6 - 2™n symbols.

The memory usage is for the one-way algorithm is very large, since we have to save the
information symbols for all the iterations that the decoder processes, i.e., we have to save
2N - 3n code symbols. Besides that we have the memory that the decoders are using which
is 2N - 72™. The total memory usage is thus about N times higher than for the two-way
algorithm.

The delay of the two-way implementation is only one block as the decoder has to be fin-
ished when the next block of data arrives, i.e., the delay is n symbols.

The delay of the one-way implementation is larger, since we have to wait for the pipeline
to fill up before we can decode the symbols, i.e., the delay is 2N - n which is 2V times higher
than for the two-way implementation.

If we compare the iterative decoder, using the two-way a posteriori implementation, used
on turbo codes with the Viterbi decoder used on a normal convolutional code with similar
complexity we see that the iterative decoder has better performance but longer delay. For
example a the Viterbi decoder used on a memory 7 convolutional decoder has approximately
the same complexity as the memory 2 iterative decoder with 20 iterations. The performance
is approximately 1.5 dB better for the iterative decoder at a bit error rate of 1073.

46

Chapter 8

Results

In this section the results of our simulations are presented as comparisons between the bit-error
rate for different interleaver sizes and interleaver types, different sizes of component encoders,
different numbers of iterations and finally a comparison between the one-way and the two-way
algorithms using different delays 7 for the one-way algorithm.

We start by looking at the bit-error rates for different types and sizes of the interleaver. The
interleavers used in the simulations are “classical” block interleavers with sizes 32 x 32 = 1024,
64 x 64 = 4096, 128 x 128 = 16384 and 256 x 256 = 65536 symbols, and pseudo-random
interleavers of the same sizes. From this point on the “classical” block interleaver is called just
block interleaver and the pseudo-random interleaver is called random interleaver.

The interleaver is, as we will see, a very important part of the performance of a turbo

-—- Block 32x32

—— Block 128x128
. Random 32x32

107F : : Random 128x128 |

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2
SNR [dB]

Figure 8.1: Diagram showing bit-error probabilities for different interleaver types and sizes for
the two-way algorithm with 10 iterations and m = 2.

47

code system. If we compare the 32 x 32 block interleaver in Figure 8.1 with the 32 x 32
random interleaver we can see that when we use the random interleaver we get lower bit-error
rates than we do when we use the block interleaver. Comparing the 128 x 128 block inter-
leaver with the 128 x 128 random interleaver we see that the difference in performance is bigger
when we use larger interleaver sizes, especially when the SNR increases. The performance for
the block interleaver does not increase very much, even though the size of the interleaver is
increased with a factor of 16. With larger encoder memory, the performance for the block
interleaver increases more with bigger interleaver sizes, but the random interleaver is always
better, so there is no reason for using the block interleaver.

Another important parameter when using the iterative decoding algorithm is of course the
number of iterations. In Figure 8.2 the influence the number of iterations on the bit-error
probability is illustrated. We can see that the effect of increasing the number of iterations is
larger with higher SNR ratio, i.e. the bit-error decreases faster with the number of iterations.
The figure also shows that to reach sufficiently low bit-error levels we need more iterations at

105 T T T T
SNR 0.0 dB
[. : - == SNR 0.5 dB
ok --- SNR1.0dB ||
B B H
I
NN
F ~
SN ~
N DS
1070 S : e
\ N :
<
\ N
<
\ _\\
\ Sl
2107k N TR 4
\ Tl
N \\\\“;
\ B T —
107k \ ; 3
A :
N
N
10°F I T L
107° I I I I I I I I I
2 4 6 8 10 12 14 16 18 20

Iterations

Figure 8.2: Diagram showing bit-error probabilities for different numbers of iterations. (Two-
way algorithm, 64 x 64 random interleaver, m = 2)

low SNR ratios than at high SNR ratios.

In Figure 8.3 there is a comparison between different memory sizes for the two-way algo-
rithm using the same 64 x 64 random interleaver and 10 iterations. We can see that the
memory 4 improves the bit-error rate faster with increasing signal-to-noise ratio compared to
the memory 2, but memory 6 has worse performance for low SNRs. This can be explained by
that we get longer burst errors with larger encoder memory. The simulations also show that
there is a limit where the curves flattens, the so called error floor.

48

10 T T

- memory 2
—— memory 4
memory 6

0 0.2 0.4 0.6 08 1 12 14
SNR [dB]

Figure 8.3: Diagram showing bit-error probabilities for different encoder memories. (Two-way
algorithm, 64 x 64 random interleaver, 10 iterations)

The next diagram, Figure 8.4, shows a comparison between the one-way and the two-way
algorithm. The performances of the algorithms are approximately the same. The one-way
algorithm has the advantage over the two-way algorithm that the code sequences do not have
to be terminated, i.e. we do not have to send the terminating bits. Because of this the one-
way algorithm can have better performance than the two-way algorithm when small blocks
(interleavers) are used.

Figure 8.5 shows the bit-error rate for the one-way algorithm with window sizes 7 = 5,10 and 20.
We can see that the bit-error rate improves with bigger 7. In Figure 8.4 we could see that with
7 = 20 the performance of the one-way algorithm is the same as for the two-way algorithm.

The influence of the window size 7 for the one-way algorithm is shown in Figure 8.6. Here,

like in Figure 8.5, we can see that larger 7 improves the bit-error rate, but here we also can
see that the bit-error rate only improves up to a certain limit.

49

— Two-way
- == One-way

6 I I ! I I

0 0.2 0.4 0.6 0.8 1 1.2
SNR [dB]

Figure 8.4: Comparison between the one-way and the two-way algorithms (32 x 32 and 64 x 64
random interleavers, 10 iterations, m = 2. For one-way 7 = 20)

—— 15
- 1=10
--- =20

SNR [dB]

Figure 8.5: Bit-error rates for 7 = 5,10 and 20 for the one-way algorithm (64 x 64 random
interleaver, 10 iterations)

20

_2

2?10

SNR=0.0 dB
SNR=0.5 dB

Figure 8.6: Bit-error rates for different values of 7 for the one-way algorithm (64 x 64 random

interleaver, 10 iterations)

ol

25

Chapter 9

Conclusions

In this thesis we have examined performance of different decoding algorithms for the turbo
encoder. We have concluded that the one-way and two-way implementations have essentially
the same performance. The advantages of the one-way algorithm are that it can be imple-
mented in a pipelined structure and that it can be used for non-terminated codes. The main
disadvantages of the one-way implementation are that is uses more memory and has a longer
decoding delay than the two-way implementation.

We also found that the choice of interleaver is essential to get good performance. The inter-
leaver size should be as large as possible. The choice of interleaver size is a tradeoff between
better performance and longer decoding delay. The type of interleaver is also important.
Our results show that the pseudo-random interleaver is a good choice compared to the block
interleaver. Much effort has been devoted to finding good interleavers for turbo-codes, but
it seems that the performance gain compared to the pseudo-random interleaver is small, or
as Wozencraft once said “You should choose the interleaver at random and avoiding being
unlucky”.

Choosing the size of the encoder memory optimally, also improves the performance but larger
memory means higher decoding complexity. Our simulations show that the optimal memory
size does not need to be the largest. With very large memory sizes the performance decreases
due to longer burst errors.

From our research we can conclude that turbo codes is an efficient method to protect data
from errors. By increasing the interleaver size we get better performance without increasing
the complexity in the decoder, only the delay and the memory consumption are affected. The
number of iterations should be optimized for different SNR ratios to save power. A compari-
son between the iterative decoder and the Viterbi decoder show that the iterative decoder has
better performance but longer delay at similar complexity.

22

Appendix A

Tables

A.1 Simulation results for the two-way implementation

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.072 0.0598 0.0482 0.0373 0.028 0.0205 0.0146
10 0.0649 0.0517 0.0394 0.0285 0.0202 0.0139 0.00941
20 0.0627 0.0492 0.0371 0.0261 0.018 0.0124 0.00811
Table A.1: Block interleaver size—=32x32, encoder memory—2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0101 0.007 0.00477 0.00326 0.00221 0.00154 0.00107
10 0.00631 0.00426 0.00295 0.00199 0.0014 0.00102 0.000773
20 0.00544 0.00364 0.00251 0.00173 0.00123 0.000917 | 0.000675
Table A.2: Block interleaver size—=32x32, encoder memory—2
SNR
Iterations | 1.4 1.5 1.6 1.7 1.8 1.9 2.0
5 0.000751 | 0.000538 | 0.000393 | 0.000279 | 0.000187 | 0.000128 | 9.46e-005
10 0.000523 | 0.000389 | 0.000284 | 0.000227 | 0.000165 | 0.000109 | 7.18e-005
20 0.000471 | 0.000361 | 0.000264 | 0.000211 | 0.000152 | 0.000105 | 6.56e-005

Table A.3: Block interleaver size=32x32, encoder memory=2

23

SNR

Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.069 0.0569 0.0453 0.0349 0.026 0.0189 0.0133
10 0.0614 0.0478 0.0355 0.0255 0.0176 0.0119 0.008
20 0.0587 0.0445 0.032 0.0222 0.0149 0.01 0.00668
Table A.4: Block interleaver size=64x64, encoder memory=2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00919 0.00621 0.00419 0.00282 0.0019 0.00129 0.000902
10 0.00536 0.00361 0.0025 0.00169 0.00121 0.000877 | 0.000648
20 0.00445 0.00303 0.0021 0.00151 0.00107 0.000798 | 0.000606
Table A.5: Block interleaver size=64x64, encoder memory=2
SNR
Iterations | 1.4 1.5 1.6 1.7 1.8 1.9 2.0
5 0.000651 | 0.000472 | 0.000367 | 0.000264 | 0.000201 | 0.000153 | 0.000114
10 0.000502 | 0.00038 0.000297 | 0.000224 | 0.000177 | 0.000125 | 0.000101
20 0.000478 | 0.000365 | 0.000289 | 0.000214 | 0.000171 | 0.000117 | 9.7e-005
Table A.6: Block interleaver size=64x64, encoder memory=2
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0692 0.0568 0.0449 0.0344 0.0253 0.0181 0.0128
10 0.0613 0.0472 0.0349 0.0245 0.0168 0.0114 0.00747
20 0.0585 0.0441 0.0311 0.0213 0.0144 0.00938 0.00604
Table A.7: Block interleaver size—128x128, encoder memory—2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00875 0.0059 0.00395 0.00267 0.00184 0.00127 0.000886
10 0.00499 0.00337 0.00235 0.00166 0.00121 0.00088 0.000654
20 0.00409 0.00281 0.00201 0.00143 0.0011 0.000775 | 0.000588

Table A.8: Block interleaver size—128x128, encoder memory—2

o4

SNR

Iterations | 1.4 1.5 1.6 1.7 1.8 1.9 2.0
5 0.000633 | 0.000453 | 0.000332 | 0.000225 | 0.000156 | 0.00011 8.82e-005
10 0.0005 0.000349 | 0.000272 | 0.000164 | 0.000125 | 9.45e-005 | 7.88e-005
20 0.000442 | 0.000332 | 0.000254 | 0.000157 | 0.000123 | 9.22e-005 | 7.98e-005
Table A.9: Block interleaver size=128x128, encoder memory=2
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0688 0.0565 0.0449 0.0344 0.0255 0.0184 0.0129
10 0.0612 0.0473 0.035 0.0247 0.017 0.0114 0.0076
20 0.0585 0.0439 0.0313 0.0217 0.0144 0.00962 0.00631
Table A.10: Block interleaver size=256x256, encoder memory=2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00892 0.00601 0.00401 0.00268 0.00181 0.00123 0.000905
10 0.00512 0.00352 0.00241 0.00167 0.00118 0.000842 | 0.000658
20 0.00426 0.00293 0.00217 0.00149 0.00108 0.00077 0.000605
Table A.11: Block interleaver size=256x256, encoder memory—2
SNR
Iterations | 1.4 1.5 1.6 1.7 1.8 1.9 2.0
5 0.000635 | 0.000441 | 0.000336 | 0.000255 | 0.000195 | 0.000144 | 0.000116
10 0.000507 | 0.000365 | 0.000284 | 0.000207 | 0.000152 | 0.000109 | 7.61e-005
20 0.000467 | 0.000352 | 0.000266 | 0.000197 | 0.000146 | 0.000101 | 7.51e-005

Table A.12: Block interleaver size=256x256, encoder memory—2

29

SNR

Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0691 0.0555 0.0428 0.0311 0.0212 0.0137 0.00832
10 0.0609 0.0461 0.0325 0.0212 0.0126 0.00709 0.00373
20 0.0585 0.0434 0.03 0.0188 0.0109 0.00594 0.00289
Table A.13: Random interleaver size=32x32, encoder memory=2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00475 0.00257 0.00134 0.000692 | 0.000361 | 0.000215 | 0.000132
10 0.0017 0.000785 | 0.000384 | 0.000225 | 0.00014 9.52e-005 | 5.86e-005
20 0.00124 0.000566 | 0.000302 | 0.000163 | 0.000106 | 7.06e-005 | 3.8e-005
Table A.14: Random interleaver size=32x32, encoder memory—2
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0655 0.0501 0.0354 0.0224 0.0127 0.00638 0.00283
10 0.0544 0.034 0.0171 0.00669 0.00216 0.000611 | 0.000117
20 0.0491 0.0263 0.0107 0.00327 0.000819 | 0.000198 | 5.95e-005
Table A.15: Random interleaver size=64x64, encoder memory=2
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00114 0.000425 | 0.000155 | 5.74e-005 | 2.77e-005 | 1.67e-005 | 1.14e-005
10 4.36e-005 | 2.49e-005 | 2.01e-005 | 1.43e-005 | 9.68e-006 | 6.71e-006 | 5.67e-006
20 2.12e-005 | 1.59e-005 | 1.43e-005 | 9.77e-006 | 7.86e-006 | 6.34e-006 | 5.61e-006
Table A.16: Random interleaver size=64x64, encoder memory=2
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0778 0.0662 0.055 0.045 0.0367 0.031 0.0287
10 0.0906 0.0839 0.0764 0.0714 0.0643 0.0585 0.0512
20 0.087 0.0799 0.0717 0.0673 0.0639 0.0613 0.0605

Table A.17: MIL interleaver size=333, encoder memory—2

26

SNR

Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0305 0.0379 0.051 0.0699 0.0935 0.12 0.145
10 0.0448 0.0391 0.0375 0.0401 0.0488 0.0626 0.0824
20 0.0599 0.0579 0.0589 0.0577 0.0577 0.0587 0.0632
Table A.18: MIL interleaver size=333, encoder memory=2

SNR
Iterations | 1.4 1.5 1.6 1.7 1.8 1.9 2.0
5 0.167 0.183 0.187 0.183 0.17 0.153 0.131
10 0.101 0.000219 | 0.000105 | 6e-005 2.68e-005 | 2.23e-005 | 1.27e-005
20 0.0713 0.0775 0.0828 0.0856 0.0809 0.0711 0.0595

Table A.19: MIL interleaver size=333, encoder memory=2

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0882 0.0659 0.0452 0.029 0.0168 0.00847 0.00378
10 0.0724 0.0497 0.0308 0.0172 0.00844 0.00353 0.00135
20 0.0677 0.045 0.0273 0.0141 0.00641 0.00267 0.000874

Table A.20: Random interleaver size=32x32, encoder memory=4

SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00156 0.000616 | 0.000179 | 7.46e-005 | 2.21e-005 | 3.15e-005 | 1.75e-005
10 0.000454 | 0.000155 | 7.44e-005 | 2.7e-005 2.21e-005 | 1.95e-005 | 1.7e-005
20 0.000322 | 8.98e-005 | 6.32e-005 | 2.6e-005 2.22e-005 | 1.76e-005 | 1.55e-005

Table A.21: Random interleaver size—32x32, encoder memory—4

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0732 0.0436 0.0197 0.00663 0.00177 0.000337 | 6.68e-005
10 0.04 0.0136 0.00386 0.000501 | 7.49e-005 | 1.71e-005 | 1.49e-005
20 0.0289 0.00828 0.0022 0.000132 | 1.99e-005 | 1.64e-005 | 1.48e-005

Table A.22: Random interleaver size—64x64, encoder memory—4

o7

SNR

Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 2.14e-005 | 1.46e-005 | 1.12e-005 | 8.75e-006 | 7.08e-006 | 5.98e-006 | 5.33e-006
10 1.22e-005 | 1.08e-005 | 9.88e-006 | 8.35e-006 | 7.19e-006 | 6.01e-006 | 5.2e-006
20 1.18e-005 | 1.05e-005 | 9.39e-006 | 8.18e-006 | 6.95e-006 | 5.99e-006 | 5.16e-006
Table A.23: Random interleaver size—64x64, encoder memory—4

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
) 0.0751 0.0386 0.0118 0.00201 0.000257 | 3.85e-005 | 1.29e-005
10 0.0241 0.00145 2.97e-005 | 6.59e-006 | 5.67e-006 | 4.77e-006 | 3.79e-006
20 0.00705 0.000504 | 7.06e-006 | 6.07e-006 | 4.97e-006 | 4.07e-006 | 3.73e-006

Table A.24: Random interleaver size=128x128, encoder memory=4

SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
) 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006
10 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006
20 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006 | 3.73e-006

Table A.25: Random interleaver size=128x128, encoder memory=4

28

A.2 Simulation results for the one-way implementation

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0797 0.0673 0.055 0.0434 0.0332 0.0243 0.017
10 0.0756 0.0619 0.0485 0.0364 0.0262 0.0177 0.0116
20 0.0746 0.0606 0.047 0.035 0.0246 0.0165 0.0107
Table A.26: Random interleaver size=32x32, encoder memory=2, 7 = 10
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0116 0.00751 0.00478 0.00305 0.00196 0.00129 0.000824
10 0.00739 0.00459 0.00292 0.0019 0.00126 0.000875 | 0.000617
20 0.00671 0.00425 0.00273 0.00176 0.00121 0.00085 0.000598
Table A.27: Random interleaver size=32x32, encoder memory—=2, 7 = 10
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0794 0.0662 0.0528 0.0401 0.0287 0.0192 0.0121
10 0.0758 0.0602 0.0443 0.0299 0.0179 0.00988 0.0053
20 0.0753 0.0588 0.0421 0.0271 0.0153 0.00816 0.00457
Table A.28: Random interleaver size=64x64, encoder memory—=2, 7 = 10
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00723 0.00422 0.00243 0.00144 0.000912 | 0.000608 | 0.00043
10 0.00302 0.0019 0.00125 0.000879 | 0.000661 | 0.000501 | 0.000382
20 0.00275 0.0018 0.00122 0.000881 | 0.000666 | 0.000502 | 0.000381

Table A.29: Random interleaver size=64x64, encoder memory=2, 7 = 10

29

SNR

Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.116 0.107 0.0982 0.089 0.0795 0.07 0.0608
10 0.116 0.107 0.098 0.0886 0.0789 0.0692 0.0596
20 0.115 0.106 0.0971 0.078 0.0876 0.0682 0.0587
Table A.30: Random interleaver size=128x128, encoder memory=2, 7 = 15

SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0517 0.0433 0.0357 0.029 0.0233 0.0185 0.0146
10 0.0502 0.0417 0.0339 0.0272 0.0216 0.0171 0.0136
20 0.0495 0.0411 0.0334 0.0268 0.0212 0.0168 0.0134

Table A.31: Random interleaver size=128x128, encoder memory=2, 7 = 15

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.115 0.107 0.0974 0.0882 0.079 0.0699 0.061
10 0.115 0.106 0.097 0.0876 0.0781 0.0688 0.0598
20 0.115 0.106 0.0969 0.0875 0.078 0.0687 0.0596

Table A.32: Random interleaver size=32x32, encoder memory=2, 7 = 15

SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0525 0.0445 0.0372 0.0307 0.025 0.0201 0.0162
10 0.0511 0.0429 0.0355 0.029 0.0236 0.019 0.0152
20 0.0509 0.0427 0.0354 0.0289 0.0234 0.0189 0.0151

Table A.33: Random interleaver size=32x32, encoder memory—2, 7 = 15

SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.116 0.107 0.0975 0.0882 0.0787 0.0693 0.06
10 0.115 0.106 0.0972 0.0877 0.078 0.0683 0.0587
20 0.115 0.106 0.0972 0.0877 0.078 0.0682 0.0586

Table A.34: Random interleaver size=64x64, encoder memory—2, 7 = 15

SNR

Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.0511 0.0428 0.0354 0.0287 0.023 0.0182 0.0144
10 0.0495 0.041 0.0334 0.027 0.0215 0.017 0.0134
20 0.0494 0.0408 0.0333 0.0269 0.0214 0.0169 0.0134
Table A.35: Random interleaver size=64x64, encoder memory=2, 7 = 15
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0661 0.0525 0.04 0.0288 0.0196 0.0125 0.00754
10 0.058 0.0428 0.0296 0.019 0.0111 0.00619 0.00319
20 0.0555 0.04 0.0267 0.0164 0.00921 0.00491 0.00251
Table A.36: Random interleaver size=32x32, encoder memory=2, 7 = 20
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00431 0.00234 0.00125 0.000627 | 0.000352 | 0.0002 0.000114
10 0.00156 0.000802 | 0.000362 | 0.000171 | 0.000121 | 7.8e-005 4.78e-005
20 0.00114 0.000576 | 0.00027 0.00014 8.98e-005 | 6.54e-005 | 4.61e-005
Table A.37: Random interleaver size=32x32, encoder memory=2, 7 = 20
SNR
Iterations | 0.0 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0651 0.0498 0.035 0.0224 0.0126 0.00621 0.00269
10 0.0542 0.0338 0.0168 0.00663 0.00179 0.000406 | 0.000112
20 0.049 0.0264 0.0108 0.00293 0.00064 0.000125 | Te-005
Table A.38: Random interleaver size=64x64, encoder memory—=2, 7 = 20
SNR
Iterations | 0.7 0.8 0.9 1.0 1.1 1.2 1.3
5 0.00107 0.00039 0.000149 | 6.56e-005 | 2.81e-005 | 1.78e-005 | 1.2e-005
10 4.78e-005 | 2.58e-005 | 1.55e-005 | 1.92e-005 | 1.29e-005 | 9.18e-006 | 7.54e-006
20 3.04e-005 | 2.42e-005 | 2e-005 1.43e-005 | 1.27e-005 | 9.09e-006 | 7.45e-006

Table A.39: Random interleaver size=64x64, encoder memory—=2, 7 = 20

61

Bibliography

[ARIOS]

[BCIRT4]

[BGT93|

[For66|

[3297]

[1298]

[Lin97|

[Shads|

[Tro96]

[VOT79]

[Zig98]

ARIB. Japan’s Proposal for Candidate Radio Transmission Technology on IMT-
2000:W-CDMA, 1998.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate. IEEE Transactions on Information Theory,
pages 284-287, March 1974.

C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo-codes. In Proc. 1993 IEEE International Conference
on Communications, Geneva, Switzerland, pages 1064-1070, 1993.

David G. Forney. "Concatenated Codes”. MIT Press, Cambridge, Mass., 1966.

Alberto Jiménez and Kamil Sh. Zigangirov. "Periodic time-varying convolutional
codes with low-density parity-check matrices". submitted to IEEE Trans. on In-
form. Theory., 1997.

Rolf Johannesson and Kamil Sh. Zigangirov. "Fundamentals of Convolutional
Codes". IEEE Press, 1998.

Goran Lindell. "Introduction to Digital Communication”. Unfinished working
manuscript, 1997.

C.E. Shannon. "A Mathematical Theory of Communication". Bell System Tech.
J., vol.27, pp.379-423 and pp.623-656, 1948.

A. Trofimov. Soft Output Decoding Algorithm for Trellis Codes. Submitted to
IEEFE Transactions on Information Theory, November 1994 (rejected 1996).

Andrew J. Viterbi and Jim K. Omura. "Principles of Digital Communications and
Coding". McGraw-Hill, 1979.

Kamil Sh. Zigangirov. App Decoding of Convulutional Codes. Submitted to Probl.
Peradachi Inform, Januari 1998.

62

