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Abstract. The R+−F+−
Consistency problem is a basic problem

related to the construction of phylogenetic trees. Its input is two sets R+

and R− of resolved triplets and two sets F+ and F− of unresolved triplets
(also known as fan triplets). The objective of the problem is to determine
if there exists a phylogenetic tree that includes all elements in R+ ∪ F+

and excludes all elements in R− ∪ F− as embedded subtrees, and to
construct such a tree if one exists. Jansson et al. [Journal of Compu-
tational Biology, 2018] cataloged the computational complexity of the
problem under various restrictions, with four notable exceptions in which
the output tree is required to be ternary, i.e., has degree at most three.
Here, we resolve these four remaining cases by proving that for ternary
trees: (i) F+

Consistency as well as R+F+
Consistency are solvable

in polynomial time; and (ii) F+−
Consistency and R+F+−

Consis-

tency are NP-hard. To obtain (i), we develop a novel way of expressing
the triplets Consistency problem for ternary trees as a system of equa-
tions whose nontrivial solutions can be used to partition the leaf labels
into subsets that label subtrees of the output tree. Result (ii) is obtained
after observing some new equivalences between resolved triplets and fan
triplets consistent with a given phylogenetic tree.

Keywords: phylogenetic tree · rooted triplets consistency · tree
algorithm · computational complexity

1 Introduction

Phylogenetic trees are a key tool in evolutionary biology, used to describe evolu-
tionary history and relationships between different species. They are also used in
other fields; for example, in linguistics to model relationships between languages.
An important challenge associated with phylogenetic trees is their reconstruc-
tion from different types of data [6,16]. Finding a phylogenetic tree that best
describes the given data can be a difficult and, for large datasets, time-consuming
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task. In many cases, however, a compromise between computational efficiency
and accuracy may be achieved by the supertrees technique [2,3]: First, using a
computationally intensive method such as maximum likelihood [4,6], create a
set of phylogenetic trees for small (e.g., 3-element), overlapping subsets of the
leaf labels that each have a high probability of being correct. Next, using a
combinatorial algorithm, merge all the small trees into a single tree.

A rooted phylogenetic tree with exactly three leaves can be either binary,
in which case it is called a resolved triplet, or not, in which case it is called an
unresolved triplet or a fan triplet. (This article will use the term fan triplet.) In
the context of merging trees into a supertree, the following problem is funda-
mental: Determine if there exists a tree corresponding to a given collection of
required and forbidden sets of resolved and fan triplets, and if so, construct such
a tree. This problem has been investigated by many researchers [5,7–9,11–15,17]
under different assumptions. In particular, a classic algorithm by Aho et al. [1]
named Build that solves the problem for the case of required resolved triplets
in polynomial time has been well studied and extended in various ways.

Jansson et al. [10] surveyed and cataloged the computational complexity
of the many variants of the problem and obtained several new results in the
process, but left four borderline variants open. The main goal of the present
paper is to resolve these remaining variants, thereby completely characterizing
the computational complexity of the problem when the output tree is required
to have degree at most D for any integer D ≥ 2, for all possible 15 nonempty
combinations of the different types of inputs.

2 Preliminaries

Recall that a tree is a simple connected graph without cycles. A tree is rooted
if one of its vertices has been designated as the root. The edges of a rooted tree
can be assigned a natural orientation forming directed paths from the root to
each leaf. If there exists a path from a vertex u to a vertex v, we say that u is an
ancestor of v and that v is a descendant of u. When such a path is of length one
(that is, there exists an edge from u to v) then we also say that u is the parent
of v and that v is the child of u.

A phylogenetic tree is a rooted tree in which each leaf is given a unique label
and each internal vertex has at least two children. Additionally, we will also
treat the degenerate cases of a tree with a single vertex and the empty tree as
phylogenetic trees. For simplicity, we will refer to phylogenetic trees as trees and
identify each leaf with its label. For any (phylogenetic) tree T , we will denote
the set of its leaves (labels) by LT . For any two leaves u, v ∈ LT , we denote by
lcaT (u, v) their lowest common ancestor, that is, the vertex w that is an ancestor
of both u and v such that no child of w is also an ancestor to both u and v.

Here we let the degree of a vertex be the number of its children, and the
degree of a tree be the maximum degree of a vertex taken over all vertices of the
tree. A binary tree is a tree in which the degree of each vertex is at most 2, and
a ternary tree is a tree in which the degree of each vertex is at most 3.
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Fig. 1. All possible rooted triplets with the leaf set {x, y, z} – resolved triplets (a) xy|z,
(b) xz|y, and (c) yz|x and fan triplet (d) x|y|z.

A rooted triplet, or triplet for short, is a tree with exactly three leaves. Let t
be a rooted triplet and suppose that Lt = {x, y, z}. If t is a binary tree, then t is
called a resolved triplet and we write xy|z, where lcat(x, y) is a proper descendant
of lcat(x, z) = lcat(y, z). Otherwise, the triplet t is called a fan triplet and we
write x|y|z. Note that there exist only four triplets (see Fig. 1) with a fixed set
of leaves {x, y, z}, namely xy|z, xz|y, yz|x, and x|y|z.

Given a tree T and three distinct leaves {x, y, z} ⊆ LT , the resolved triplet
xy|z is consistent with T if and only if lcaT (x, y) is a proper descendant of
lcaT (x, z) = lcaT (y, z). Likewise, the fan triplet x|y|z is consistent with T if
and only if lcaT (x, y) = lcaT (x, z) = lcaT (y, z). (Equivalently, we may say in
each case that the tree is consistent with the triplet.) In other words, the rooted
triplet consistent with T describes the relative position of its three leaves in T .

We will say that a tree T is over a set of leaves L if each leaf of T belongs to
L. Let T be a tree. We define the restriction of the tree T into the set L′ ⊆ LT ,
denoted by T |L′ , to be the tree T ′ with LT ′ = L′ such that each triplet t
consistent with the tree T ′ is also consistent with the tree T . Less formally, T |L′

can be obtained by “removing” all leaves x /∈ L′ not belonging to the set L′. In
the special case where the set L′ has only 3 elements, a tree t = T |L′ is a rooted
triplet over L′ consistent with the tree T . Let tT denote the set of all resolved
and fan triplets consistent with T , i.e., tT =

{
T |{x,y,z} : {x, y, z} ⊆ LT

}
. Using

the new notation, we can note that T ′ = T |L′ is the restriction of tree T into
the set of leaves L′ ⊆ LT if and only if tT ′ ⊆ tT .

To illustrate, let

F = {1|2|3, 1|4|5, 1|6|7, 2|4|7, 2|5|6, 3|4|6}

be a set of fan triplets over the leaf set {1, 2, . . . , 7}. There is no ternary tree T
with F ⊆ tT (and we strongly recommend the reader to try to prove it), but if the
last fan triplet 3|4|6 ∈ F is replaced by 3|4|7 then the situation changes; more
precisely, the resulting set is consistent with a ternary tree with three maximal
proper subtrees leaf-labeled by {4, 6}, {1, 2, 3}, and {5, 7}, respectively. It may
seem to the reader that the only way to distinguish between such cases is through
an optimized brute-force check of all possibilities. However, we will demonstrate
how to perform this task in polynomial time. We hope that after reading this
paper, the reader will appreciate the usefulness of the newly developed theory.
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The general problem considered in this paper is as follows.

The R+−F+− Consistency Problem. Given two sets R+ and R− of
resolved triplets and two sets F+ and F− of fan triplets over a set of leaves L,
either return a tree with LT = L such that R+

⋃
F+ ⊆ tT and (R− ⋃

F−)
⋂
tT =

∅ if such a tree exists, or return the answer null if no such tree exists.

In other words, the output tree must contain all triplets from the sets R+

and F+, and must not contain any triplets from the sets R− or F−. Different
variants of the problem arise when some of the given sets are forced to be empty.
In such cases, we name the problem by omitting the symbols from F ,R,+,−
corresponding to the empty sets. For example, the R+

Consistency problem is
the variant of the R+−F+−

Consistency problem where R− = F+ = F− = ∅.
Tables 1 to 4 below (all entries can be found in [10]), show the computational

complexity of the 15 variants of the R+−F+−
Consistency problem when the

output tree has no degree limitations and when the output tree is required to have
outdegree at most D for D = 2, D = 3, and any fixed integer D ≥ 4, respectively.
In the tables, P means that the corresponding problem is polynomial-time solv-
able, while NP-h means that the corresponding problem is NP-hard. For exam-
ple, the R−F−

Consistency problem is NP-hard. Furthermore, a question mark
indicates that the computational complexity was unknown.

As can be seen in Tables 1 to 4, the problem was almost fully solved except
four variants in the borderline case of D = 3. For the remaining four variants,
i.e., F+, R+F+, F+−, and R+F+−, the computational complexity remained
open. In the rest of the paper, we resolve the last four remaining variants by
either finding a polynomial-time solution or an NP-hardness proof for each one,
thereby completely characterizing the computational complexity of the problem
when the output tree is required to have degree at most D for any integer D ≥ 2,
for all possible 15 nonempty combinations of the different types of inputs.

Table 1. Unbounded degree case

∅ F+ F− F+−

∅ – P P NP-h

R+ P P P NP-h

R− P P NP-h NP-h

R+− P P NP-h NP-h

Table 2. Binary case

∅ F+ F− F+−

∅ – P P P

R+ P P P P

R− NP-h NP-h NP-h NP-h

R+− NP-h NP-h NP-h NP-h

Table 3. Ternary case

∅ F+ F− F+−

∅ – ? P ?

R+ P ? P ?

R− NP-h NP-h NP-h NP-h

R+− NP-h NP-h NP-h NP-h

Table 4. D-bounded degree case, D ≥ 4

∅ F+ F− F+−

∅ – NP-h P NP-h

R+ P NP-h P NP-h

R− NP-h NP-h NP-h NP-h

R+− NP-h NP-h NP-h NP-h
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3 The F+ CONSISTENCY Problem for a Ternary Tree

This section focuses on the following variant of the Consistency problem.

The Ternary F+ Consistency Problem. For a given set of fan triplets
F = {a1|b1|c1, . . . , an|bn|cn} over a set of leaves L, return a ternary tree T
with LT = L such that F ⊆ tT if such a tree exists, or return the answer null if
it does not.

Below, we will prove the following theorem.

Theorem 1. The ternary F+ Consistency problem is solvable in polynomial
time.

For each fan triplet a|b|c ∈ F , we identify it with an integer domain modulo 3
equation wa +wb +wc ≡3 0. The set F can thus be identified with the following
system of integer domain equations:

⎧
⎪⎨

⎪⎩

wa1 + wb1 + wc1 ≡3 0,
...

wan
+ wbn + wcn ≡3 0.

The above system of equations can be represented as a matrix equation
M(F,L)−→w ≡3 −→

0 , where −→w = (wj)j∈L and the matrix M(F,L) has |F | = n
rows and |L| columns, with entries from the set {0, 1, 2} and initially equal to 0
or 1. Specifically, M(F,L)i,j = 1 if the leaf j appears in the i-th equation, that
is, if j ∈ {ai, bi, ci}; otherwise, the matrix element is equal to 0.

The solution to a system of equations will be called trivial if all the variables
are equal. Otherwise, if at least two variables are different, a solution will be
called nontrivial. Consider the following simple yet crucial observation.

Observation 1. The equality wa + wb + wc ≡3 0 holds if and only if either all
variables are distinct {wa, wb, wc} = {0, 1, 2} or all are equal wa = wb = wc.

Proof. The three variables wa, wb, and wc can take one of three values: 0, 1, or
2. If the three variables are not all different, then at least two of them are equal;
without loss of generality, let wa = wb. Then

wc ≡3 −wa − wb ≡3 −2wa ≡3 wa.

Hence if the three variables are not all different, then they are all equal. �	
Let T be a ternary tree consistent with a set of fan triplets F . The root vertex

has at most 3 children and each child forms a separate subtree. Each triplet
a|b|c ∈ F can have all leaves in different subtrees or all in the same subtree.
This property corresponds to the solution of the equation wa + wb + wc ≡3 0.
Intuitively, the value of the variable wj corresponds to the index (0, 1, or 2) of
the subtree in which the leaf j is located. More generally, we can formulate the
following lemma.
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Lemma 1. Let F 
= ∅ be a set of fan triplets over a set of leaves L. There exists
a ternary tree T with the leaf set LT = L such that T is consistent with F if and
only if the equation M(F,L)−→w ≡3 −→

0 has a nontrivial solution −→w = (wj)j∈L

and there exist ternary trees T0, T1, and T2 such that for each i ∈ {0, 1, 2}, the
tree Ti with the set of leaves LTi

= Li is consistent with Fi, where

Li = {j : wj = i},
Fi = {a|b|c ∈ F : a, b, c ∈ Li}.

Proof. Let F 
= ∅ be a set of fan triplets over L, and let T be a ternary tree
with the leaf set LT = L such that T is consistent with F . Let T0, T1, and T2

denote the subtrees of the root vertex in the tree T . For each leaf d located
in the i-th subtree, we put wd = i. Note that each triplet a|b|c ∈ F has all
leaves located either in different subtrees, in which case {wa, wb, wc} = {0, 1, 2},
or all located in the same subtree, in which case wa = wb = wc. In both cases,
by Observation 1, we have the equality wa + wb + wc ≡3 0. We have an identical
equality for all triplets in F , and it follows that −→w is a solution to the equation
M(F,L)−→w ≡3 −→

0 . Since F 
= ∅, the root vertex of T must have at least two
children. Therefore, at least two of the trees T0, T1, and T2 are non-empty, and
thus the obtained solution is nontrivial. Since T is consistent with F , then trees
T0, T1, T2 are consistent consecutively with the sets F0, F1, F2 by their definition.

Let F 
= ∅ be a set of fan triplets. Suppose we have given a nontrivial solution
to the matrix equation M(F,L)−→w ≡3 −→

0 and let T0, T1, T2 be ternary trees such
that each Ti is consistent with Fi and LTi

= Li, where Li, Fi for i ∈ {0, 1, 2}
are defined as in the lemma statement. Since we have a nontrivial solution, at
least two of the sets Li are non-empty, meaning that at least two of the trees
Ti are non-empty. We create a tree T by taking a root vertex and adding the
trees T0, T1, T2 as subtrees of the root. Note that for each triplet a|b|c ∈ F
the equality wa + wb + wc ≡3 0 holds and by Observation 1 we obtain that
{wa, wb, wc} = {0, 1, 2} or wa = wb = wc. In the first case, the leaves a, b, and
c are located in distinct subtrees of T . Then lcaT (a, b) = lcaT (b, c) = lcaT (a, c)
is the root vertex of the tree T , and thus the triplet a|b|c is consistent with T .
In the second case, the triplet a|b|c is consistent with some tree Ti and therefore
also with T . Therefore, all triplets in F are consistent with T . �	

On the implementation side, we will represent each inner vertex of a ternary
tree as a list of (two or three) pointers to its children, and a tree as a pointer to
the root vertex. We now introduce the following auxiliary functions.

• solve(F , L) – finds a nontrivial solution to a system of equations identified
with a set of triplets F in variables from the set L and divides the vari-
ables into three sets according to their values. In the first step, we create the
matrix M(F,L). The equation we wish to solve is M(F,L)−→w ≡3 −→

0 . Using
Gauss–Jordan row elimination, we reduce the matrix to reduced row echelon
form. In this way, the variables were divided into two subsets, that is, the
dependent variables corresponding to the columns with leading ones and the
independent variables corresponding to the remaining columns. Any solution
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can be obtained by fixing any values of the independent variables and calcu-
lating from them the values of the dependent variables. When there are at
least two independent variables, we find a nontrivial solution by fixing at least
two different values to the independent variables. Otherwise, when there is at
most one independent variable, we find all solutions by considering all possi-
ble values for that potential variable. When there exists a nontrivial solution−→w = (wj)j ∈ L, the function finds and returns a triple of sets (L0, L1, L2),
where Li = {j : wj = i}. Otherwise, the function returns null.

• divide(F , L) – returns all triplets from the set F where all leaves of the
triplet belong to the set L.

• newVertex() – returns a pointer to the newly created vertex.

• newEdge(T , V ) – creates at vertex T an edge to vertex V .

• addMissingVertices(T , L) – adds the missing vertices from the set L to
the tree T in an arbitrary way such that the modified tree still remains a
ternary tree. (Later, we will provide an example of such an addition.)

The first function is dominated by Gauss–Jordan row elimination. Since 2 ≡3 −1,
we will never have to use division, and thus solve(F , L) can be implemented in
O(|L|2|F |) time using a brute-force approach. All other auxiliary functions can
be implemented in linear time.

Now, using Lemma 1 and the divide-and-conquer method we present an
algorithm for the ternary F+

Consistency problem. When |F | > 0, we apply
Lemma 1 and divide the original problem into two or three smaller instances.
Otherwise, in the base case, when |F | = 0, we return any tree as the answer
(for example, by creating an empty tree and adding missing leaves to it). The
pseudocode of our algorithm is summarized in FanTernaryBuild.

On a high level, our new FanTernaryBuild algorithm, just like Aho et
al.’s Build algorithm from [1], uses the natural divide-and-conquer strategy on
the set of leaves. Both algorithms construct a tree by partitioning the set of
leaves into blocks containing leaves belonging to the same subtree. They then
recursively find a solution for each block and finally attach the recursively found
subtrees as children to a new root vertex. If, at any point during execution, the
current set of leaves contains more than one leaf but cannot be divided into more
than one block, the algorithms stop and return null.

The crucial aspect is the method of partitioning the leaf set. The
FanTernaryBuild algorithm creates a system of modulo 3 equations defined
by the input triplets, solves it, and then assigns all leaves whose variables have
the same value to one block of the partition. In comparison, Build creates an
undirected graph whose vertices represent the leaves of the constructed tree, with
edges defined by the input triplets. It then computes the connected components
of the graph and assigns the leaves in each connected component to one block
of the partition.
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Algorithm FanTernaryBuild

Input: a set of leaves L, and a set of fan triplets F over L.
Output: a tree T consistent with the set F or null if no such tree exists.

1: function FanTernaryBuild(F , L)
2: T = ∅
3: if |F | > 0 then
4: (L0, L1, L2) = solve(F,L)
5: if (L0, L1, L2) = null then return null

6: T=newVertex()
7: for i = 0, 1, 2 do
8: Fi = divide(F,Li)
9: Ti = FanTernaryBuild(Fi, Li)

10: if Ti =null then return null

11: if |Li| > 0 then newEdge(T , Ti)

12: addMissingVertices(T , L)
13: return T

The computational complexity of FanTernaryBuild is O(|L|3|F |), since
the output tree has at most |L|− 1 inner vertices, and O(|L|2|F |) operations are
performed at each inner vertex. Thus the ternary F+

Consistency problem
has a polynomial-time solution, proving Theorem 1.

Equipped with the FanTernaryBuild algorithm, the reader can directly
show that the set F in the example in Sect. 2 has no solution and also easily find
a ternary tree that is consistent with the modified F .

4 The Remaining Ternary CONSISTENCY Problems

To determine the exact boundary between NP-hard versions of the ternary Con-

sistency problem and those with a polynomial time solution, we now study the
remaining variants. In what follows, we will often need to modify trees by adding
or removing leaves. We will start with the simple observation that adding and
removing leaves can be done in constant time and does not affect the other
triplets unrelated to the added or removed leaves.

Observation 2. Let T be a ternary tree over a set of leaves L, and let t be a
triplet over {a, b, x}, where a, b ∈ LT are leaves and x /∈ LT is not a leaf of T .
We can add the leaf x to the tree T in constant time, thus obtaining a new
ternary tree T ′ such that t ∈ tT ′ .

Similarly, for each leaf x in LT ′ of a given ternary tree T ′, we can remove it
in constant time, thus obtaining a new ternary tree T over LT ′ \ {x}.

Moreover, in both addition and removal, the triplets not containing leaf x will
remain unchanged, that is, tT ⊆ tT ′ .

Proof. We will first consider adding a new leaf x to a tree T . Let u = lcaT (a, b)
be the lowest common ancestor of the vertices a, b ∈ LT . Consider the first case



Resolving Unresolved Triplets Consistency Problems 201

when t = ab|x. If u is the root of the tree T , then we create a new vertex w as
the new root of the tree T and then add x and the previous root as a children of
w. Otherwise, we subdivide the edge from u to its parent to create a new vertex
w, and add x as a child of w. Now consider the second case when t = ax|b. Let c
be the child of u that is an ancestor of a. Subdivide the edge from u to c to
create a new vertex w, and again add x as a child of w. The case t = bx|a can
be realized by symmetry. Finally consider the last case when t = a|b|x. If u has
degree 2, then add x as a child of u. Otherwise, let c be the child of the vertex u
which is neither an ancestor of a nor b. Subdivide the edge from u to c to create
a new vertex w, and add x as a child of w.

Now consider the removal of a leaf. Let w be the parent of a leaf x. We remove
x and its incident edge. If after removing x, the vertex w has degree 1, we need
to remove the vertex w. If w is the root, then we remove w and its incident edge,
setting a unique child of w as the new root. Otherwise, we remove the vertex w
by replacing the two-edge path through w with a single edge.

In both adding and removing a leaf x, the relative positions of the other leaves
remain unchanged. Thus, all triplets not containing x will remain unchanged. �	
Remark. The most well-known algorithmic definition of tree restriction uses the
above method for leaf removal. However, since each tree is uniquely defined by
the set of its all triplets, the definitions are equivalent.

We will formulate two lemmas. The first lemma shows an equivalence between
consistency with a resolved triplet and a related fan triplet.

Lemma 2. Let T be a ternary tree such that a, b, c, x ∈ LT and T is consistent
with fan triplet a|c|x. The tree T is consistent with the resolved triplet p = ab|c
if and only if the fan triplet q = b|c|x is consistent with T .

Proof. First, we will prove the theorem in the base case when LT = {a, b, c, x}.
Let L0, L1, and L2 be the sets of leaves of the three connected components
of T minus the root and its edges. As we already know from Sect. 3, the sets
L0, L1, and L2 correspond to a nontrivial solution of the system of equations
corresponding to the set of fan triplets. Then, the variables wa, wb and wc satisfy
wa + wc + wx ≡3 0, since a|c|x is consistent with T .

If T is consistent with b|c|x, then wb ≡3 −wc − wx ≡3 wa by Observation 1.
If T is consistent with ab|c, then also wa ≡3 wb.
In both cases, since the solution is nontrivial, by Observation 1 we obtain

{wa = wb, wc, wx} = {0, 1, 2}. Thus T is consistent with both ab|c and b|c|x.
Now we will prove the theorem for any tree. Let T be a tree consistent with

the triplet a|c|x. Let T ′ = T |{x,a,b,c} be a restriction of T . It follows that tT ′ ⊆ tT .
If the triplet p is consistent with T , then p is also consistent with T ′ because tT ′

consists of a triplet over the set of leaves {a, b, c}. Using the result for the base
case, we obtain q ∈ tT ′ ⊆ tT . Symmetrically, if q ∈ tT , then q ∈ tT ′ , and thus
p ∈ tT ′ ⊆ tT . �	

The following lemma is a generalization of the preceding one and allows for
the conversion of any triplet into another chosen unrelated triplet.
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Lemma 3. Let T be a ternary tree such that a, b, c, x, y, z ∈ LT and T is con-
sistent with the set of fan triplets F = {a|c|x, a|b|y, a|x|z}. Define the triplets

p1 = ab|c, p2 = ac|b, p3 = bc|a, p4 = a|b|c;
q1 = x|y|z, q2 = xz|y, q3 = xy|z, q4 = yz|x.

Then, for any index j, the tree T is consistent with the triplet pj if and only if
the triplet qj is consistent with the tree T .

Proof. First, we will present a proof in the base case when LT = {x, y, z, a, b, c}.
Let L0, L1, and L2 be the sets of leaves of the three connected components of T
minus the root and its edges. As we already know from Sect. 3, the sets L0, L1,
and L2 correspond to a nontrivial solution to the equation M(F,L)−→w ≡3 −→

0 . By
subtracting the row corresponding to a|c|x from the row corresponding to a|x|z,
we obtain the system of equations

⎧
⎨

⎩

wx ≡3 2wa + 2wc,
wy ≡3 2wa + 2wb,
wz ≡3 wc.

Each solution can be determined by fixing the values of the independent variables
wa, wb, wc and calculating values the dependent variables wx, wy, wz. Thus, there
exist 33 = 27 solutions. Consider the following four nontrivial solutions of the
above equation system:

1. L0 = {x}, L1 = {a, b, y}, L2 = {c, z};
2. L0 = {y}, L1 = {a, c, x, z}, L2 = {b};
3. L0 = {x, y}, L1 = {a}, L2 = {b, c, z};
4. L0 = {c, y, z}, L1 = {a}, L2 = {b, x}.

It can be easily checked that the j-th solution provides consistency with the
triplets pj and qj . For each of these solutions we can construct 3! − 1 = 5
additional solutions of the system by permuting the indices. Additionally, by
setting wa = wb = wc we obtain all 3 trivial solutions. This gives a total of
4 ∗ 6+3 = 27 solutions, and hence there are no other solutions. Thus the lemma
holds in this base case.

Now we will prove the theorem for any tree. Let T be a tree consistent with
F . Let T ′ = T |{x,y,z,a,b,c} be a restriction of T . It follows that tT ′ ⊆ tT . Let
pj ∈ tT be a triplet consistent with T . Thus pj is also consistent with T ′ because
tT ′ consists of a triplet over the set of leaves {a, b, c}. Using the result for the
base case, we obtain qj ∈ tT ′ ⊆ tT . Symmetrically, if qj ∈ tT , then qj ∈ tT ′ , and
thus pj ∈ tT ′ ⊆ tT . �	

Using Lemmas 2 and 3, we prove two theorems concerning the computational
complexity of two ternary Consistency problems.
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Theorem 2. The ternary R+F+ Consistency problem is solvable in polyno-
mial time.

Proof. Let F+ be the set of fan triplets over L and R+ be the set of resolved
triplets over L. For each triplet ab|c ∈ R+, we create a new additional leaf label
x = x(a, b, c) /∈ L. We convert the sets of resolved triplets in R+ and fan triplets
in F+ into a new set of fan triplets

F = F+ ∪ {a|c|x, b|c|x : ab|c ∈ R+}

over an extended set of leaves LF = L ∪ {x : ab|c ∈ R+}.
We will prove that the ternary R+F+

Consistency problem for sets of
triplets R+ and F+ over L is equivalent to the ternary F+

Consistency prob-
lem for a set of triplets F over LF .

Let T be a tree over L that is consistent with F+ and R+. For each triplet
ab|c ∈ R+, we define a new leaf x = x(a, b, c), and using Observation 2, we add
the new leaf x to the tree T so that the resulting tree T ′ is consistent with a|c|x.
By Lemma 2 the tree T ′ is consistent with the triplet b|c|x. We repeat this for
all other elements of R+ to obtain a tree that is consistent with F .

Conversely, let T ′ be a tree over LF that is consistent with F . Obviously,
the tree T ′ is consistent with F+ and by Lemma 2, the tree T ′ is also consistent
with R+. Remove all leaves x ∈ LF \L to obtain a tree T over L. By Observation
2, T remains consistent with R+ and F+.

By Theorem 1, the ternary F+
Consistency problem has a polynomial

time solution. Since we can convert every instance of the ternary R+F+
Con-

sistency problem into an equivalent instance of the ternary F+
Consistency

in polynomial time, the ternary R+F+
Consistency problem is also in P . �	

Theorem 3. The ternary F+− Consistency problem is NP-hard.

Proof. We give a polynomial-time reduction from the ternary R−
Consistency

problem, which is known to be NP-hard. Let R− be a set of resolved triplets
over L. For each triplet ab|c ∈ R−, we create three new additional leaf labels
x = x(a, b, c), y = y(a, b, c), and z = z(a, b, c). We convert the set of resolved
triplets R− into two new sets of fan triplets

F+ = {a|c|x, a|b|y, a|x|z : ab|c ∈ R−}
F− = {x|y|z : ab|c ∈ R−}

over an extended set of leaves LF = L ∪ {x, y, z : ab|c ∈ R−}.
We will prove that the ternary R−

Consistency problem for a set of triplets
R− over L is equivalent to the ternary F+−

Consistency problem for sets of
fan triplets F+ and F− over LF .

Let T be a tree over L that is not consistent with R−. For each triplet
ab|c ∈ R−, we invoke Observation 2 to successively add leaves x, y, and z to T
so that the resulting tree T ′ is consistent with a|c|x, a|b|y, and a|x|z. By Lemma
3, since T ′ is not consistent with ab|c, it is also not consistent with x|y|z. We
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repeat this for all other elements of R− and obtain a tree that is consistent
with F+ and not consistent with F−.

Conversely, let T ′ be a tree over LF that is consistent with F+ and not
consistent with F−. By Lemma 3, T ′ is not consistent with R−. Remove all
leaves in LF \L to obtain a tree T . By Observation 2, T is not consistent with
the set R−, since T = T ′|L and tT ⊆ tT ′ .

Thus, the ternary F+−
Consistency problem is NP-hard, because the

ternary R−
Consistency problem is NP-hard. �	

Since the ternary R+F+−
Consistency problem is a generalization of the

ternary F+−
Consistency problem, the following result is immediate.

Corollary 1. The ternary R+F+− Consistency problem is NP-hard.

5 Conclusion

Finally, we summarize our new findings and complete the classification.

Proposition 1. The computational complexity of all 15 variants of the ternary
R+−F+− Consistency problem is as presented in Table 5.

Proof. The variants F+ and R+F+ have polynomial-time solutions by Theorem
1 and its generalization Theorem 2. By [10, Corollary 1], the variant R+F−, and
thereby also R+ and F−, have polynomial-time solutions, too. In contrast, using
Theorem 3 and its consequent Corollary 1, we obtain that the variant F+−, and
hence R+F+−, are NP-hard. All other variants are NP-hard since the variant
R− is NP-hard according to [10, Theorem 3]. �	

Table 5. Completed version of Table 3, presenting the computational complexity of
all variants of the ternary Consistency problem. As before, P means that the corre-
sponding problem is polynomial-time solvable, while NP-h means that the problem is
NP-hard.

∅ F+ F− F+−

∅ – P P NP-h

R+ P P P NP-h

R− NP-h NP-h NP-h NP-h

R+− NP-h NP-h NP-h NP-h
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