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Email: mia@cs.lth.se

Abstract

We consider the following clustering problems: given
a general undirected graph, partition its vertices into
disjoint clusters such that each cluster forms a clique
and the number of edges within the clusters is max-
imized (Max-ECP), or the number of edges between
clusters is minimized (Min-ECP). These problems
arise naturally in the DNA clone classification. We
investigate the hardness of finding such partitions and
provide approximation algorithms. Further, we show
that greedy strategies yield constant factor approxi-
mations for graph classes for which maximum cliques
can be found efficiently.

Keywords: Approximation algorithms, clique parti-
tion

1 Introduction

The correlation clustering problem has gained a lot of
attention recently (Ailon, Charikar & Newman 2005,
Bansal, Blum & Chawla 2004, Charikar, Guruswami
& Wirth 2003, Demaine & Immorlica 2003, Emanuel
& Fiat 2003, Swamy 2004); given a complete graph
with edges labeled “+”(similar) or “−”(dissimilar),
find a partition of the vertices into clusters that agrees
as much as possible with the edge labels, i.e., that
maximizes the agreements (the number of “+” edges
inside clusters plus the number of “−” edges be-
tween cluster) or that minimizes the disagreements
(the number of “−” edges inside clusters plus the
number of “+” edges between clusters).

In this paper, we consider a special variant of the
correlation clustering problem in which there are no
negative edge labels. Instead, we omit an edge be-
tween two vertices of a dissimilar pair. Furthermore,
we require an edge between each pair of vertices in
a cluster, i.e, every cluster must form a clique. We
consider the following two combinatorial optimization
problems. The maximum edge clique partition prob-
lem (Max-ECP for short) aims to find a partition of
the vertices into cliques such that the total number
of edges within all cliques is maximized. The related
minimization version of this problem, the minimum
edge clique partition problem (Min-ECP for short), is
defined analogously with the exception that the total
number of edges between the cliques is minimized.

The Max-ECP and Min-ECP problems first have
been considered in the setting of DNA clone classi-
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fication (Figueroa, Goldstein, Jiang, Kurowski, Lin-
gas & Persson 2005). In order to characterize
cDNA and ribosomal DNA (rDNA) gene libraries,
the powerful DNA array based method oligonu-
cleotide fingerprinting is commonly used (see, e.g.,
(Drmanac, Stavropoulos, Labat, Vonau, Hauser,
Soares & Drmanac 1996, Herwig, Poustka, Müller,
Bull, Lehrach & O’Brien 1999, Valinsky, Della Ve-
dova, Jiang & Borneman 2002, Valinsky, Della
Vedova, Scupham, Alvey, Figueroa, Yin, Hartin,
Chrobak, Crowley, Jiang & Borneman 2002)). A
key step in this method is the cluster analysis, which
aims to cluster together similar data, i.e., the finger-
prints. The problem of clustering binarized finger-
print data such that the number of clusters is mini-
mized was first studied and motivated in (Figueroa,
Borneman & Jiang 2004). In (Figueroa, Goldstein,
Jiang, Kurowski, Lingas & Persson 2005), Figueroa
et al. propose new approaches of partitioning bi-
narized fingerprints into disjoint clusters in order to
maximize the number of pairs of similar fingerprints
lying inside the clusters (equivalently, minimize the
number of pairs of similar fingerprints lying in differ-
ent clusters). These problems can hence be viewed
as the Max-ECP and Min-ECP problems where the
vertices are the binarized fingerprints and the edges
between them indicate their similarity.

Related results

The well studied correlation clustering problem was
first introduced for complete graphs by Bansal
et al. (Bansal, Blum & Chawla 2004). It has ap-
plications in many areas (see, e.g., (Bansal, Blum
& Chawla 2004, Demaine & Immorlica 2003)). As
noted in (Bansal, Blum & Chawla 2004), the prob-
lem of maximizing agreements and minimizing dis-
agreements are equivalent at optimality but differ
from the point of view of approximation. In (Bansal,
Blum & Chawla 2004), it was established that these
problems are NP-hard for complete graphs, and a
PTAS was given in the case of maximizing agree-
ments, whereas a constant factor approximation is
given in the case of minimizing disagreements. This
constant factor approximation was later improved by
Charikar et al. (Charikar, Guruswami & Wirth 2003)
where a factor 4 approximation algorithm is given
for complete graphs based on linear programming re-
laxation. The latter problem was also proved to be
APX-hard.

The problems of maximizing agreements and min-
imizing disagreements were later generalized to in-
clude non-necessarily complete graphs with edge
weights in (Charikar, Guruswami & Wirth 2003). A
factor 0.7664 approximation algorithm based on the
rounding of a semidefinite programming relaxation
for the problem of maximizing agreements for general



weighted graphs was given in (Charikar, Guruswami
& Wirth 2003), but this factor was later improved to
0.7666 by Swamy (Swamy 2004). As for the prob-
lem of minimizing disagreements, a factor O(log n)
approximation algorithm for general weighted graphs
was proposed (independently) in (Charikar, Gu-
ruswami & Wirth 2003),(Demaine & Immorlica
2003), and (Emanuel & Fiat 2003). Recently, Ailon
et al. (Ailon, Charikar & Newman 2005) have pro-
vided a randomized expected 3-approximation algo-
rithm for minimizing disagreements. In the case of
weighted complete graphs, which satisfies probability
constraints (w+

ij + w−
ij = 1 for edge (i, j)) and trian-

gle inequality constraints (w−
ik ≤ w−

ij + w−
jk) on the

edges, they have provided a factor 2 approximation
algorithm.

The APX-hardness of the unweighted version
of Min-ECP has been established by Shamir et
al. (Shamir, Sharan & Tsur 2002). They have also
presented results in the case when a solution must
contain exactly p clusters; Min-ECP is solvable in
polynomial time for p = 2 but NP-complete for p > 2.

Our results

In this paper, we investigate the approximability of
Max-ECP and Min-ECP. Specifically, we prove that
Max-ECP on general, undirected graphs is hard to
approximate within a factor of n1−o(1), unless NP ⊆

ZPTIME(2(log n)O(1)

). On the other hand, we give
an n-approximation algorithm running in polynomial
time for this problem. In the case of Min-ECP we pro-
vide a polynomial-time O(log n)-approximation algo-
rithm for this problem on general, undirected graphs
with non-negative weights. We also prove that this
problem is NP-hard to approximate within 1+ 1

880 −ǫ,
for any ǫ > 0. We further consider the greedy heuris-
tic and show that it yields a 2-approximation for
both Max-ECP and Min-ECP, under the assumption
that the largest clique can be determined in polyno-
mial time. Thus, the greedy method could be ap-
plied in practice only to graph classes for which max-
imum cliques can be found efficiently, for instance
chordal graphs, line graphs and circular-arc graphs
(cf. (Figueroa, Borneman & Jiang 2004)). We also
note that these bounds are actually tight. Figure 1
summarizes our contributions.

Problem Lower Bound Upper Bound

Max-ECP n1−o(1) n
weightedMin-ECP 1 + 1

880 − ǫ O(log n)
GreedyMax-ECP 2 2
GreedyMin-ECP 2 2

Figure 1: Summary of results.

Our paper is structured as follows. We give more
formal definitions of Max-ECP and Min-ECP in Sec-
tion 2. In Section 3, we provide a factor n approxi-
mation algorithm for Max-ECP. In Section 4, we give
a lower bound on approximability of Max-ECP. In
Section 5, we provide a polynomial-time O(log n)-
approximation algorithm for the weighted version of
Min-ECP and in section 6, we derive a lower bound
on approximability of Min-ECP. Finally, in Section 7,
we consider the greedy algorithm for Max-ECP and
Min-ECP and prove that it yields a 2-approximation.

2 Preliminaries

The formal definition of Max-ECP and Min-ECP is
as follows.

Definition 1 Let G = (V, E) be an undirected graph
and let n = |V |. The problem of maximum edge clique
partition (Max-ECP for short) is to find a partition
of V into disjoint subsets V1, ..., Vk such that for each
1 ≤ i ≤ k, any two vertices in Vi share an edge and
the total number of edges within the subsets V1, ..., Vk
is maximized.

The problem of minimum edge clique partition
(Min-ECP for short) is defined analogously to Max-
ECP with the exception that the total number of
edges between the subsets V1, ..., Vk is minimized.

Note that an exact solution to Max-ECP is an ex-
act solution to Min-ECP and vice versa. The ex-
ample shown in Figure 2 demonstrates two feasible
solutions to Max-ECP and Min-ECP. As depicted in
Figure 2(a), the total number of edges inside the clus-
ters is 18, hence the solution to Max-ECP has a to-
tal cost of 18. On the contrary, the total number of
edges outside the clusters in Figure 2(a) is 12, hence
the solution to Min-ECP has a total cost of 12. The
optimal clustering is depicted in Figure 2(b), with the
total cost of 24 for Max-ECP and the total cost of 6
for Min-ECP.

(a) (b)

Figure 2: A feasible solution and the optimal solution
to Max-ECP and Min-ECP.

3 A polynomial-time n-approximation algo-
rithm for Max-ECP

Max-ECP is NP-hard and even hard to approximate
within a factor n1−O(1/(log n)γ), for some constant
γ, as proved in the next section. On the positive
side, we prove in this section that Max-ECP admits
a polynomial-time, factor k approximation algorithm,
where k is the number of vertices in the largest clique.
The approximation algorithm works as follows: Find
a maximum matching in G and output it and the
singletons containing the vertices not covered by the
matching as a clique partition.

Theorem 1 Let k be the number of vertices in the
largest clique in G. Max-ECP can be approximated
within a factor of k in polynomial time.

Proof: Denote by OPT(G) and APPR(G) the total
number of edges within cliques in an optimal solu-
tion for Max-ECP on G and in the solution returned
by the approximation algorithm described above, re-
spectively. Let (V1, V2, . . . , Vm) be an optimal solu-
tion for Max-ECP on G. There is a matching in G

which, for i = 1, ..., m, includes at least |Vi|−1
2 edges

from the clique induced by Vi. Since for i = 1, ..., m,
k ≥ |Vi|, such a matching includes at least the 1

k
fraction of edges from each of the m cliques induced
by V1, V2, . . . , Vm. Hence, APPR(G) ≥ OPT(G) /k
holds.



4 A lower bound on the approximability of
Max-ECP

The maximum clique problem is known to not ad-
mit an approximation within n1−O(1/(log n)γ) for some

constant γ unless NP ⊆ ZPTIME(2(log n)O(1)

) (Khot
2001). It follows that aforementioned lower bound on
approximability holds for graphs on n vertices hav-
ing a clique of size m not less than n1−x, where
x = O(1/(log n)γ). Consider such a graph G. An
optimal solution to Max-ECP for G has at least

(

m
2

)

edges. Hence, an n1−3x approximation to Max-ECP
for G has at least m(m − 1)/(2n1−3x) edges. The
size of maximum clique in the approximate solution
to Max-ECP is minimized if all cliques have equal size
h. In this case the total number of edges in the ap-
proximate solution is

(

h
2

)

n/h which is less than nh/2.

Hence, we obtain the inequality m(m−1)/(2n1−3x) ≤
nh/2 which by our assumptions on G and m yields
h = Ω(nx). This implies n1−x approximation of
the maximum clique problem in G which contradicts
(Khot 2001). Thus, we obtain the following theorem.

Theorem 2 Unless NP ⊆ ZPTIME(2(log n)O(1)

), the

Max-ECP problem does not admit an n1−O(1/(log n)γ)

approximation, for some constant γ.

5 A polynomial-time O(log n)-approximation
algorithm for weighted Min-ECP

Min-ECP can be approximated within a factor of
O(log n) in polynomial time, even for edge-weighted
graphs with arbitrary non-negative weights, as fol-
lows.

Let G = (V, E) be a given instance of Min-ECP in
which each edge e has a non-negative weight w(e).
Define W = maxe∈E w(e). Construct an edge-
weighted, edge-labeled, complete graph G′ = (V, E′),
where each e ∈ E′ is labeled by ′+′ and assigned
weight w(e) if e ∈ E, or labeled by ′−′ and as-

signed weight W · n2 log2 n if e 6∈ E. Run any one
of the polynomial-time O(log n)-approximation algo-
rithms for Minimum Disagreement Correlation Clus-
tering for weighted graphs (Charikar, Guruswami &
Wirth 2003, Demaine & Immorlica 2003, Emanuel &
Fiat 2003) on G′ to obtain a clustering C′ for V , and
return the set S of subgraphs of G induced by C′.

Lemma 1 For any two vertices u, v ∈ V which are
not joined by an edge in G, u and v do not belong to
the same cluster in C′.

Proof: Suppose u and v belong to the same cluster
in C′. Then the clustering obtained from C′ by placing
u in a singleton cluster would have a disagreement
score lower than that of C′ by a factor of ω(log n),
which is a contradiction.

By Lemma 1, the vertices from each cluster in C′

form a clique in G. Since the clusters in C′ are disjoint,
S is a partition of G into cliques, which proves the
correctness of the method.

Next, we consider the approximation ratio. For
any partition M of G into cliques, denote by
ECP (M) the ECP score for M , i.e., the sum of all
weights of edges whose two endpoints belong to dif-
ferent cliques in M . Similarly, for any clustering M ′

of G′, let Disagree(M ′) be the disagreement corre-
lation clustering score for M ′. Finally, MinECP (G)
and MinDisagree(G′) denote the minimum possible
scores of ECP for G and Disagree for G’, respec-
tively.

Lemma 2 ECP (S) is at most O(log n) times
MinECP (G).

Proof: Let M be a partition of G into cliques which
minimizes ECP , and let M ′ be the clustering of G′

induced by the cliques in M . Then, since only edges
labeled by ′+′ contribute to Disagree(M ′), we ob-
tain MinECP (G) = ECP (M) = Disagree(M ′) ≥
MinDisagree(G′).

Next, observe that ECP (S) is equal to
Disagree(C′) because only edges labeled by ′+′

contribute to Disagree(C′) by Lemma 1. More-
over, Disagree(C′) is at most O(log n) times
MinDisagree(G′). It follows that ECP (S) is at
most O(log n) times MinECP (G).

To summarize:

Theorem 3 Weighted Min-ECP can be approxi-
mated within a factor of O(log n) in polynomial time.

6 A lower bound for Min-ECP

Shamir et al. have established the APX-hardness of
unweighted Min-ECP by a reduction from a special
variant of set cover in (Shamir, Sharan & Tsur 2002).
It folllows by (Shamir, Sharan & Tsur 2002) that the
Min-ECP problem cannot have a polynomial-time ap-
proximation scheme unless P=NP. However, no ex-
plicit lower bound on the approximation factor for
Min-ECP achievable in polynomial time is known in
the literature.

In this section, we present a new reduction from
the so called three way cut problem to the weighted
Min-ECP problem which yields an explicit lower
bound on the approximation factor.

The problem of three way cut (3WC) is to find a
minimum number of edges whose removal disconnects
three distinguished vertices.

Let A and B be two optimization problems (max-
imization or minimization). A linearly reduces to B
if there are two polynomial time algorithms h and g,
and constants α, β > 0 such that

1. For an instance a of A, algorithm h produces an
instance b = h(a) of B such that the cost of an
optimal solution for b, opt(b), is at most α·opt(a),
and

2. For a, b = h(a), and any solution y of b, al-
gorithm g produces a solution x of a such that
|cost(x) − opt(a)| ≤ β|cost(y) − opt(b)|.

By (Dahlhaus, Johnson, Papadimitriou, Seymour
& Yannakakis 1994), if A linearly reduces to B and B
has a polynomial-time 1+ ǫ approximation algorithm
then A has a polynomial-time (1 + αβǫ) approxima-
tion algorithm.

Max-Cut is the problem of finding, for an undi-
rected graph with vertex set V , a partition V1, V2 of V
such that the number of edges {u, v} where {u, v}∩V1
and {u, v} ∩ V2 are both nonempty is maximized.

In (Dahlhaus, Johnson, Papadimitriou, Seymour
& Yannakakis 1994), Dahlhaus et al. presented a
linear reduction of the Max-Cut problem to 3WC in
order to prove that 3WC is APX-hard. Since Max-
Cut is APX-hard (H̊astad 2001), the APX-hardness of
3WC follows. In the aforementioned reduction α = 56
and β = 1 (Dahlhaus, Johnson, Papadimitriou, Sey-
mour & Yannakakis 1994). In fact, α can be decreased
to 55 by the proof of Theorem 5 in (Dahlhaus, John-
son, Papadimitriou, Seymour & Yannakakis 1994)1.

1In the proof of Theorem 5 in (Dahlhaus, Johnson,
Papadimitriou, Seymour & Yannakakis 1994), observe that

OPT3W C(f(G)) = 56 ·
|E|
2 − K ≤ 56 · OPTMax−Cut(G) −

OPTMax−Cut(G) = 55 · OPTMax−Cut(G)



On the other hand, H̊astad has shown that for any
ǫ > 0, it is NP-hard to approximate Max-Cut within
1 + 1

16 − ǫ (H̊astad 2001). Hence, we obtain the fol-
lowing lemma.

Lemma 3 For any ǫ > 0, it is NP-hard to approxi-
mate 3WC within 1 + 1

880 − ǫ.

To reduce 3WC to weighted Min-ECP, fix an arbi-
trary δ > 0, and transform any given instance of 3WC
on n vertices to an instance of Min-ECP as follows:

1. Assign the weight 1 to each edge in the instance.

2. For each non-adjacent pair u, v of vertices in the
instance insert an edge of weight δ/n2.

3. For each distinguished vertex si, i = 1, 2, 3, add
an auxiliary vertex ui and make it adjacent with
each vertex of the instance. Assign the weight n2

to each of the three edges (si, ui) and the weight
δ/n2 to the remaining edges incident to the ver-
tices ui, i = 1, 2, 3.

Figure 3 demonstrates how the transformation
from an instance of 3WC to an instance of Min-ECP
works.

1

1 1 1
s3

u u3

n2
n2 n

1s

1u

2

2

s2

Figure 3: Transformation from 3WC to Min-ECP.

In this figure, note that a dashed line between a
pair of vertices indicates an edge with weight δ/n2.

Note that in an optimal Min-ECP solution to
the transformed instance each of the pairs si, ui,
i = 1, 2, 3 belongs to a separate clique and the to-
tal weight of the edges outside all the cliques in the
optimal solution is between cut and cut + δ where
cut stands for the value of an optimal solution to the
instance of 3WC.

Suppose that for some ǫ > 0, weighted Min-ECP
could be approximated in polynomial time within
a factor of f where f ≤ 1 + 1

880 − ǫ. Then us-
ing the set of edges between the three cliques in an
approximate solution for weighted Min-ECP as an
approximate solution for 3WC would yield a three-
way cut for the original graph of cardinality at most
f · (cut + δ) ≤ (f + f · δ) · cut. By setting δ =

ǫ
2·(1+ 1

880−ǫ)
, we could approximate 3WC in polyno-

mial time within 1 + 1
880 − ǫ/2. We obtain a contra-

diction with Lemma 3. Hence, we obtain the following
theorem.

Theorem 4 For any ǫ > 0, it is NP-hard to approx-
imate weighted Min-ECP within 1 + 1

880 − ǫ.

7 Greedy method for Max-ECP and Min-

ECP

The greedy strategy applies naturally to the Max-
ECP and Min-ECP problems: iteratively pick the

largest clique until all elements have been partitioned
into disjoint clusters. However, the problem of find-
ing a maximum clique is itself known to be extremely
hard to approximate (Khot 2001). Thus, the greedy
method could be applied in practice only to graph
classes for which maximum cliques can be found effi-
ciently (cf. (Figueroa, Borneman & Jiang 2004)).

Theorem 5 The greedy method yields a 2-
approximation for Max-ECP and Min-ECP.

Proof: Consider an optimal solution to the Max-ECP
problem (or, the Min-ECP problem, respectively) and
let us assume that it consists of m cliques. Let C be
the largest clique, say on k vertices, picked by the
greedy method. Suppose first that the intersection of
C with any clique in the optimal partition is a single-
ton or empty. Thus, in a way, the at most k(k − 1)
former clique edges are replaced with the k(k − 1)/2
edges in C (or, the k(k − 1)/2 edges in C previously
outside the cliques with at most k(k − 1) new edges
outside the cliques, respectively). In the remaining
case, if the intersection of C with any of the cliques
in the optimal partition contains more than one ver-
tex, less than k(k−1) former clique edges are replaced
by the k(k−1)/2 edges in C (or, the k(k−1)/2 edges
in C previously outside the cliques are replaced by
less than k(k − 1) new edges outside the cliques, re-
spectively). By iterating the argument, we obtain the
theorem.

The example shown in Figure 4 demonstrates that
our upper bound on the approximation factor of the
greedy method for Max-ECP is tight. Simply, the
greedy method may produce n 2-cliques and 2n 1-
cliques (singletons) yielding n edges whereas the op-
timal clique partition consists of 2n 2-cliques yielding
2n edges.

Figure 4 is also a tight example for greedy Min-
ECP. Note that the number of edges between cliques
will be 2n in the approximate solution, whereas the
optimum contains n edges between the 2n 2-cliques.

21 n

. . .

Figure 4: An example illustrating the worst-case per-
formance of the greedy strategy for Max-ECP and
Min-ECP.

8 Final remarks

By using rather maximum weight matching than
maximum cardinality matching we can easily gener-
alize our n-approximation method for Max-ECP to
include edge weights.

It is an interesting open problem whether or not
the gap between the upper and lower bounds on ap-
proximability of Min-ECP could be tightened.

A careful reader might observe that our approx-
imation hardness result for Max-ECP does not hold
for the graph classes for which our greedy method
could be applied practically. The complexity and ap-
proximation status of Max-ECP and Min-ECP for
the aforementioned graph classes are interesting open
problems.
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