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Abstract

A consensus tree is a single phylogenetic tree that
summarizes the branching structure in a given set of
conflicting phylogenetic trees. Many different types of
consensus trees have been proposed in the literature;
three of the most well-known and widely used ones are
the majority rule consensus tree, the loose consensus
tree, and the greedy consensus tree. This paper presents
new deterministic algorithms for constructing them
that are faster than all the previously known ones.
Given k phylogenetic trees with n leaves each and
with identical leaf label sets, our algorithms run in
O(nk log k) time (majority rule consensus tree), O(nk)
time (loose consensus tree), and O(n2k) time (greedy
consensus tree).

1 Introduction

Scientists and scholars often use phylogenetic trees to
describe evolutionary relationships [9, 11, 19, 22, 25].
For various reasons, inferring an accurate phylogenetic
tree can be a difficult task, and in some settings (such
as when using multiple data sets, when applying resam-
pling techniques like bootstrapping to the same data set,
or when using heuristics for maximizing parsimony), one
ends up with a large collection S of trees rather than a
single tree [1, 2, 8, 9, 14, 25]. However, it might be nec-
essary to represent all of S by one tree, even though the
branching structures of the trees in S are in varying de-
grees of conflict with each other. In this case, a consen-
sus tree is used to summarize them. Depending on the
application and the quality of the input data, different
definitions of a “consensus tree” may be appropriate. As
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a result, during the last 40 years, many alternative types
of consensus trees have been introduced and analyzed
by biologists, mathematicians, and computer scientists;
see, e.g., [5], Chapter 30 in [9], or Chapter 8.4 in [25]
for some surveys.

Three frequently used types of consensus trees are:
(i) the majority rule consensus tree [16], (ii) the loose
consensus tree [4], and (iii) the greedy consensus tree [5,
10]. (The loose consensus tree is also known in the lit-
erature as the semi-strict consensus tree or the combin-
able component consensus tree, and the greedy consen-
sus tree is also known as the majority rule extended con-
sensus tree.) For example, a search on Google Scholar
for “majority rule consensus tree” returns thousands
of articles published in biology-related journals using
this concept. Popular computational phylogenetics soft-
ware packages such as PHYLIP [10] and MrBayes [21]
contain implementations for constructing (i) and (iii),
COMPONENT [20] implements (i) and (ii), SumTrees
in DendroPy [24] implements (i), and PAUP* [26] im-
plements (i), (ii), and (iii). Although these programs
work very well in practice, they rely on randomization
and their worst-case running times may be unbounded.
On the other hand, the fastest deterministic algorithms
published in the literature are quite slow. This situation
is unsatisfactory from a theoretical point of view. In this
paper, we develop new, simple deterministic algorithms
for constructing (i), (ii), and (iii) that are faster in the
worst case than the currently best published ones. In
particular, our algorithm for (ii) is asymptotically opti-
mal.

1.1 Definitions and notation. A phylogenetic tree
is a rooted, unordered, leaf-labeled tree in which every
internal node has at least two children and all leaves
have different labels. To simplify the presentation,
phylogenetic trees are referred to as “trees” from here
on, and every leaf in a tree is identified with its (unique)
label. If u and v are nodes in a tree and there is a
directed path from u to v then u is an ancestor of v,
and v is a descendant of u. Every node in a tree T is
considered to be an ancestor as well as a descendant of
itself; for any nodes u, v in T , in case v is a descendant
of u and u 6= v then we call v a proper descendant of u.
For any non-empty subset S of nodes in a tree T , the
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lowest common ancestor of S in T , denoted by lcaT (S),
is the unique node w in T such that: (i) w is an ancestor
of all nodes in S; and (ii) w has no proper descendant
that is an ancestor of all nodes in S.

Let T be a tree. The set of all nodes in T is
denoted by V (T ) and the set of all leaves in T by Λ(T ).
Any subset C of Λ(T ) is called a cluster of Λ(T ).
For any u ∈ V (T ), the subtree of T rooted at u (i.e.,
the subgraph of T induced by the set of descendants
of u) is written as T [u], and Λ(T [u]) is called the
cluster associated with u. Thus, the cluster associated
with a node u consists of the descendants of u that
are leaves. The cluster collection of T is defined as
C(T ) =

⋃

u∈V (T ){Λ(T [u])}. If a cluster C ⊆ Λ(T )

belongs to C(T ), we say that C occurs in T . Two
clusters C1, C2 ⊆ Λ(T ) are called pairwise compatible
if C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅. Any cluster C ⊆
Λ(T ) is said to be compatible with T if C and Λ(T [u])
are pairwise compatible for every node u ∈ V (T ). For
example, in Figure 1, the cluster {d, e} occurs in T1 but
not in T2 and T3; however, {d, e} is compatible with T2

and T3. For any C ⊆ Λ(T ), if |C| = 1 or C = Λ(T ) then
C is called trivial ; otherwise C is non-trivial.

Next, let S = {T1, T2, . . . , Tk} be a set of trees
satisfying Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L for some
leaf label set L. A consensus tree for S is a tree that
summarizes the branching information contained in S
according to some well-defined rule. This paper focuses
on the following three variants:

• A cluster that occurs in more than k/2 of the
trees in S is a majority cluster. A majority rule
consensus tree of S [16] is a tree T such that
Λ(T ) = L and C(T ) consists of all majority clusters.

• A loose consensus tree of S [4] is a tree T such
that Λ(T ) = L and C(T ) consists of all clusters
that occur in at least one tree in S and that are
compatible with all trees in S.

• Let X be a list of all clusters that occur in at
least one tree in S, sorted according to the number
of trees in S in which they occur (frequently
occurring clusters coming first and with ties broken
arbitrarily). Construct a set Y of clusters as
follows: Initialize Y := ∅. Then, traverse the list X
and for each cluster C encountered in this order,
check if C and C ′ are pairwise compatible for all
C ′ ∈ Y; if yes then let Y := Y ∪ {C}. A greedy
consensus tree of S [5, 10] is a tree T such that
Λ(T ) = L and C(T ) = Y.

See Figure 1 for an example. As pointed out in [5],
for any given S, there exists a unique majority rule
consensus tree of S and a unique loose consensus tree
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Figure 1: An example. Let S = {T1, T2, T3} as shown
above with Λ(T1) = Λ(T2) = Λ(T3) = {a, b, c, d, e}.
Majority rule, loose, and greedy consensus trees of S are
displayed. Observe that the only non-trivial majority
cluster in S is {a, b, c}. Also observe that {d, e} is the
only non-trivial cluster in S that is compatible with
all trees in S. Finally, three different greedy consensus
trees of S exist because each of the clusters {a, b}, {a, c},
{b, c} occurs once in S and exactly one of them will be
included in any greedy consensus tree, depending on
how ties among clusters are broken.
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of S, but a greedy consensus tree of S is not always
uniquely defined. Moreover, if a cluster C occurs
in the majority rule consensus tree of S or in the
loose consensus tree of S, then C occurs in all greedy
consensus trees of S.

1.2 New results. We present fast deterministic algo-
rithms for computing the majority rule consensus tree,
the loose consensus tree, and a greedy consensus tree in
Sections 3, 4, and 5, respectively, for an input set S of
trees with identical leaf label sets.

The worst-case running times of the previously
fastest deterministic algorithms and our new ones are
compared below. To express their time complexi-
ties, define k = |S| and n = |L|, and write S =
{T1, T2, . . . , Tk}, where Λ(T1) = Λ(T2) = · · · = Λ(Tk) =
L. Observe that n + 1 ≤ |V (Ti)| ≤ 2n − 1 for every
i ∈ {1, 2, . . . , k}. Let p be the number of different clus-
ters occurring in S and q the total number of clusters
occurring in S (with repetitions). Thus, p ≤ q and
q = Θ(nk) with k · (n + 1) ≤ q ≤ k · (2n− 1).

Previously best:

O(n2 + nk2) time
Majority rule (Wareham [27])

consensus tree This paper:

O(nk log k) time
Section 3

Previously best:

O(nq2) = O(n3k2) time
Loose (McMorris & Wilkinson [18])

consensus tree This paper:

O(nk) time
Section 4

Previously best:

O(nq + n2p) = O(n3k) time
Greedy (Bryant [5])

consensus tree This paper:

O(nq) = O(n2k) time
Section 5

Note that our algorithm for the loose consensus tree is
optimal since the input size is Ω(nk).

Also note that a randomized, hashing-based algo-
rithm for constructing the majority rule consensus tree
was given by Amenta et al. in [1]; its expected run-
ning time is O(nk) but its worst-case running time is
unbounded.

We implemented our algorithms to make sure that
they are practical and applied them to various simulated
data sets, as explained in Section 6. In short, these

experiments suggested that the running times of our
deterministic algorithms are already comparable to (and
in many cases, better than) those of the methods
found in commonly used software packages such as
PHYLIP [10], without having to use randomization and
hash tables for storing the clusters occurring in S.

2 Preliminaries

This section describes some algorithmic tools that will
be used in the paper.

2.1 Day’s algorithm [7]. Day’s algorithm [7] is a
method that takes as input two trees Tref and T with
Λ(Tref ) = Λ(T ) = L, and after some preprocessing,
can check whether any specified cluster from C(T ) also
occurs in C(Tref ) efficiently. In particular, it can be
applied to identify the set of all clusters that occur in
both Tref and T in O(n) time, where n = |L|. We
summarize this useful result as follows:

Theorem 2.1. (Day [7]) Let Tref and T be two trees
with Λ(Tref ) = Λ(T ) = L and let n = |L|. After O(n)
time preprocessing, it is possible to determine, for any
u ∈ V (T ), if Λ(T [u]) ∈ C(Tref ) in O(1) time.

2.2 The delete and insert operations. Define the
delete operation on any non-root, internal node u in
a tree as the operation of letting all of u’s children
become children of the parent of u, and then removing
u and the edge between u and its parent. See Figure 2.
Importantly, any delete operation on a node u in a
tree T removes the cluster Λ(T [u]) from the cluster
collection C(T ) without affecting the other clusters.
Conversely, define the insert operation as the operation
that creates a new node u which becomes: (1) a child
of an existing internal node v, and (2) the parent of a
proper subset X of v’s children satisfying |X| ≥ 2; as a
consequence, a new cluster Λ(T [u]) =

⋃

vi∈X Λ(T [vi]) is
inserted into C(T ).

2.3 Checking compatibility. Suppose that a tree T
is given. For any cluster C ⊆ Λ(T ), let Child(C) be the
set of children of the node lcaT (C). The next lemma
characterizes when C is compatible with T .

Lemma 2.1. For any tree T and C ⊆ Λ(T ), C is
compatible with T if and only if |C ∩ Λ(T [ci])| equals 0
or |Λ(T [ci])| for each ci ∈ Child(C).

Proof. (→) We prove the contrapositive. Suppose there
exists a ci ∈ Child(C) with 0 < |C ∩ Λ(T [ci])| <
|Λ(T [ci])|. This implies that Λ(T [ci]) contains some
element x ∈ C and some element y 6∈ C. Since ci is
a child of lcaT (C), there exists an element z ∈ C which
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Figure 2: Let T be the tree on the left and let u be the
marked node. Then Λ(T [u]) = {d, e, f} and applying
the delete operation on u removes the cluster {d, e, f}
from C(T ). (The remaining non-trivial clusters are
{a, b, c} and {d, e}.)

is a descendant of another child cj in Child(C), i.e.,
z 6∈ Λ(T [ci]). But then {x, z} ⊆ C and y 6∈ C, while
{x, y} ⊆ Λ(T [ci]) and z 6∈ Λ(T [ci]), so C and Λ(T [ci])
are not pairwise compatible. By definition, C is not
compatible with T .

(←) Consider any u ∈ V (T ). There are three cases:

• u is an ancestor of lcaT (C): Then trivially C ⊆
Λ(T [u]).

• u is a descendant of lcaT (C): Let ci be the child
of lcaT (C) which is an ancestor of u. By the
lemma statement, |C ∩ Λ(T [ci])| equals either 0
or |Λ(T [ci])|. If the former holds then C∩Λ(T [u]) =
∅; if the latter holds then C ∩ Λ(T [u]) = Λ(T [u]),
and Λ(T [u]) ⊆ C.

• u is not an ancestor and not a descendant
of lcaT (C): Then C ∩ Λ(T [u]) = ∅.

In all cases, C and Λ(T [u]) are pairwise compatible.
Thus, C is compatible with T . �

2.4 Procedure Merge Trees. Let T1 and T2 be two
trees with Λ(T1) = Λ(T2) = L such that every clus-
ter in C(T1) is compatible with T2. (Note that this
condition is equivalent to requiring that every clus-
ter in C(T2) is compatible with T1.) This subsection
describes an O(n)-time procedure Merge Trees(T1, T2)
which returns a tree T with Λ(T ) = L and C(T ) =
C(T1)∪C(T2), where n = |L|. Hence, Merge Trees com-
bines all the clusters from two non-conflicting trees into
one tree in linear time.

The procedure operates in two phases. The first
phase is a preprocessing phase which works as follows.
As in Day’s algorithm [7] (mentioned above), do an
O(n)-time depth-first traversal of T1 to construct a

leaf numbering function f , i.e., a bijection from L
to the set {1, 2, . . . , n}, under which each C ∈ C(T1)
is represented by an interval of consecutive integers.
Then, relabel all leaves in T2 according to f , and do
a bottom-up traversal of T2 to obtain and store, for
each v ∈ V (T2), the value m(v) := minx∈Λ(T2[v]){f(x)}.
Also do a single top-down traversal of T2 to compute,
for each v ∈ V (T2), the number of edges from the root
of T2 to v and store it in depth(v). Transform T2 into
an ordered tree by ordering the children at each internal
node v of T2 so that for every two children a and b of v,
a is to the left of b if and only if m(a) < m(b). Now
Lemma 2.1 implies:

Lemma 2.2. After making T2 an ordered tree as de-
scribed above, any C ⊆ L is compatible with T2 if and
only if C is of the form C =

⋃

ci∈D Λ(T2[ci]), where
D is a consecutive subsequence of the children of the
node lcaT2(C).

Therefore, when inserting a cluster of the
form Λ(T1[u]) into T2, we have to create a new child
node c of the node ru := lcaT2(Λ(T1[u]) and let a con-
secutive subsequence of the children of ru become chil-
dren of c instead. To be able to identify this consecu-
tive subsequence of children, we need to find the left-
most and rightmost children of ru whose subtrees con-
tain leaves from Λ(T1[u]). For this purpose, for each
x ∈ L, first define leaf rankT2

(x) to be 1+ (the number
of leaves to the left of x in T2). Then, for every u ∈
V (T1), define start(u) := minx∈Λ(T1[u]) leaf rankT2

(x)
and stop(u) := maxx∈Λ(T1[u]) leaf rankT2

(x). Intu-
itively, start(u) and stop(u) tell us the interval in the
left-to-right ordering of the leaves in T2 that consists
of all leaves from Λ(T1[u]). Use the following recur-
sive formula to precompute start(u) and stop(u) for all
u ∈ V (T1) in O(n) time in total:

Lemma 2.3. For any u ∈ V (T1), let Child(u) be the set
of children of u. Then:

start(u) =

{

leaf rankT2
(u), if u is a leaf

minc∈Child(u) start(c), otherwise

stop(u) =

{

leaf rankT2
(u), if u is a leaf

maxc∈Child(u) stop(c), otherwise

Next, for every x ∈ L, define xleft as the node v
in T2 with the smallest value of depth(v) (i.e., as close
to the root as possible) whose leftmost leaf descendant
is x. Define xright for every x ∈ L analogously, but using
the rightmost leaf descendant instead. See Figure 3. To
compute xleft and xright for all x ∈ L, do an O(n)-
time bottom-up traversal of T2. Finally, apply the
method of [3] to preprocess T2 in O(n) time so that every
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Figure 3: Suppose that Λ(T1[u]) for some specified
u ∈ V (T1) corresponds to [a..b] in the left-to-right leaf
ordering in T2. The relationship between the nodes a′

left ,
b′right , and ru determines where in T2 to insert Λ(T1[u])
as a new cluster. (In this example, du = a′

left and eu =
the rightmost child of ru.)

subsequent lca-query on any two nodes in T2 can be
answered in O(1) time. This concludes the first phase.

We now describe the second phase of Merge Trees

which inserts clusters from T1 into T2. (Recall from
the first paragraph in this subsection that Merge Trees

requires every Λ(T1[u]) to be compatible with T2.) To
avoid changing the parent of any node in T2 more than
once, we use a bottom-up approach. For each u ∈ V (T1)
in bottom-up order, do the following steps: Retrieve
a := start(u) and b := stop(u), and let a′ and b′

be the elements of L satisfying leaf rank(a′) = a and
leaf rank(b′) = b. Obtain ru := lcaT2({a′, b′}) in O(1)
time by querying the lca data structure. The next
lemma tells us where in T2 to insert Λ(T1[u]) as a new
cluster. See Figure 3 for an illustration.

Lemma 2.4. Let du be the leftmost child of ru such that
Λ(T1[u]) ∩ Λ(T2[du]) 6= ∅, and eu the rightmost child
of ru such that Λ(T1[u]) ∩ Λ(T2[eu]) 6= ∅. The following
holds:

1. If depth(a′
left) > depth(ru) then du = a′

left ; other-
wise, du = the leftmost child of ru.

2. If depth(b′right ) > depth(ru) then eu = b′right ;
otherwise, eu = the rightmost child of ru.

Thus, apply Lemma 2.4 to find du and eu in O(1) time.
In case du is the leftmost child of ru and eu is the
rightmost child of ru then Λ(T2[ru]) = Λ(T1[u]), i.e.,
the cluster already occurs in T2 and we do nothing.
Otherwise, create a new child c of ru, set depth(c) :=

depth(ru) + 1, and let all children of ru in the sequence
du, . . . , eu become children of c. Update a′

left to
point to c if du was not the leftmost child of ru, and
update b′right analogously. The correctness follows from
Lemma 2.2.

In the second phase, since the nodes are treated in
bottom-up order, the parent of each node in T2 changes
at most once. Furthermore, due to the bottom-up
ordering, there is no need to update any depth-values
or lca-values for nodes in T2 although they will change
during execution. For each u ∈ V (T1), we perform O(1)
additional operations. In total, everything takes O(n)
time.

Theorem 2.2. Procedure Merge Trees(T1, T2) runs in
O(n) time, where n = |L|.

3 Constructing the majority rule consensus
tree

Here, we present a recursive algorithm named
Maj Rule Cons Tree for constructing the majority rule
consensus tree of S in O(nk log k) time. The pseudocode
is shown in Figure 4.

Maj Rule Cons Tree splits the input set S of trees
into two halves, recursively constructs the majority rule
consensus trees TA and TB for each of the halves, checks
every cluster that occurs in TA or TB and deletes it
if it is not a majority cluster of S, and finally builds
the majority rule consensus tree of S by combining the
resulting TA and TB . To combine TA and TB in the
last step, it applies the procedure Merge Trees from
Section 2.4.

To prove the correctness of the above approach, we
need the following lemma:

Lemma 3.1. Let TA and TB be the majority rule con-
sensus trees of SA = {T1, . . . , T⌈k/2⌉} and SB =
{T⌈k/2⌉+1, . . . , Tk}, respectively. Every majority cluster
of S occurs in at least one of TA and TB.

Proof. Consider any majority cluster C of S. By
definition, C occurs in strictly more than k/2 of the trees
in S. First suppose that k is even. Then C occurs in at
least k

2 + 1 trees from S, and at least half of these trees

belong to either SA or SB . Since (k
2 +1)/2 > (k

2 )/2 and
|SA| = |SB | = k/2, we have C ∈ C(TA) or C ∈ C(TB)
by the definition of the majority rule consensus tree.

On the other hand, if k is odd then C occurs in
at least k+1

2 trees from S. Moreover, when k is odd,
|SA| = (k + 1)/2 and |SB | = (k − 1)/2. For the sake
of obtaining a contradiction, suppose that C occurs
in at most k+1

4 trees in SA and in at most k−1
4 trees

in SB . Then the total number of occurrences of C in S
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Algorithm Maj Rule Cons Tree

Input: A set S = {T1, T2, . . . , Tk} of trees with
Λ(T1) = Λ(T2) = · · · = Λ(Tk).

Output: The majority rule consensus tree of S.

1 if k = 1 then let T := T1.
/* Base case of the recursion */

2 else

2.1 Let T A := Maj Rule Cons Tree(T1, . . . , T⌈k/2⌉) ,
T B := Maj Rule Cons Tree(T⌈k/2⌉+1, . . . , Tk).

2.2 for each v ∈ V (T A) in top-down order do

if Λ(T A[v]) occurs in at most k/2 trees in S
then do a delete operation on node v.

2.3 for each v ∈ V (T B) in top-down order do

if Λ(T B [v]) occurs in at most k/2 trees in S
then do a delete operation on node v.

2.4 Let T := Merge Trees(T A, T B).

3 return T

End Maj Rule Cons Tree

Figure 4: Algorithm Maj Rule Cons Tree for construct-
ing the majority rule consensus tree.

is at most k+1
4 + k−1

4 = k
2 . Contradiction. Therefore,

C occurs in strictly more than k+1
4 = (k+1

2 )/2 trees
in SA (in which case C ∈ C(TA) by the definition of the
majority rule consensus tree) or in strictly more than
k−1
4 = (k−1

2 )/2 trees in SB (in which case C ∈ C(TB)).
�

This yields:

Theorem 3.1. Algorithm Maj Rule Cons Tree con-
structs the majority rule consensus tree of S in
O(nk log k) time.

Proof. According to Lemma 3.1, every majority cluster
of S belongs to C(TA) ∪ C(TB). Thus, after checking
every cluster C that occurs in TA or TB and keeping
C if and only if it occurs in more than k/2 of the
trees in S in Steps 2.2 and Steps 2.3, the resulting
C(TA) ∪ C(TB) will be equal to the set M of majority
clusters of S. All clusters inM are pairwise compatible
because any pair of clusters in M must occur together
in at least one tree in S by the pigeonhole principle,
so the procedure Merge Trees(TA, TB) will produce a
tree T with C(T ) =M in Step 2.4. By definition, T is
the majority rule consensus tree of S. This proves the
correctness of Maj Rule Cons Tree.

Next, we describe how to implement Step 2.2 effi-
ciently. Augment each internal node v in TA with a
counter count(v) and initialize count(v) := 0. For each
Ti ∈ S, apply the preprocessing of Day’s algorithm (see

Section 2.1) using Tref := TA and T := Ti, and then tra-
verse Ti while checking each of the O(n) internal nodes u
of Ti in O(1) time to see if Λ(Ti[u]) belongs to C(TA); if
yes, then increase count(v) for the corresponding inter-
nal node in TA by one. Due to Theorem 2.1, this takes
O(nk) time in total. Then, remove the non-majority
clusters from C(TA) by traversing TA and performing
a delete operation on every internal node v in TA with
count(v) ≤ k/2. In total, all delete operations take O(n)
time because the nodes are considered in top-down or-
der (whenever a node is deleted, its children are moved
but they will not be moved again later), and the sum
of the number of children taken over all nodes is O(n).
Proceed analogously for TB in Step 2.3. In summary,
Steps 2.2 and 2.3 take O(nk) time. Lastly, Step 2.4
takes O(n) time according to Theorem 2.2.

Let t(k) be the running time of
Maj Rule Cons Tree(T1, T2, . . . , Tk). Then
t(k) = 2 · t(k/2) + O(nk) with t(1) = O(n). Solving the
recurrence relation gives t(k) = O(nk log k). �

Remark: A natural way to parameterize the majority
rule consensus tree is by letting ℓ be any real number
such that 1/2 ≤ ℓ ≤ 1, and taking only clusters
that occur in more than a fraction ℓ of the input
trees in S [17]. Algorithm Maj Rule Cons Tree can
be modified accordingly without affecting the time
complexity by changing the condition “in at most k/2”
in Steps 2.2 and 2.3.

4 Constructing the loose consensus tree

The loose consensus tree of S can be computed by
testing every cluster that occurs in S against all other
clusters in S for compatibility. Since each pair of
clusters can be checked in O(n) time, this yields an
algorithm with O(nq2) = O(n3k2) running time. (If we
incorporate a bottom-up technique based on Lemma 2.1
to check a cluster for compatibility with a tree in
O(n) time, the running time is slightly improved to
O(nkq) = O(n2k2).) Below, we show how to do it in
O(nk) time, which is optimal. Our algorithm is called
Loose Cons Tree. It uses Merge Trees from Section 2.4
as well as a procedure named One-Way Compatible as
subroutines. We first describe One-Way Compatible.

4.1 Procedure One-Way Compatible. Let T1 and T2

be two trees with Λ(T1) = Λ(T2) = L. Proce-
dure One-Way Compatible(T1, T2) outputs a tree T
with Λ(T ) = L such that C(T ) = {C ∈
C(T1) : C is compatible with T2}. In other words,
One-Way Compatible(T1, T2) returns a copy of T1 in
which every cluster that is not compatible with T2 has
been removed. The procedure is asymmetric; for exam-
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ple, if T1 consists of n leaves attached to a root node
and T2 6= T1 then One-Way Compatible(T1, T2) = T1,
while One-Way Compatible(T2, T1) = T2.

Procedure One-Way Compatible is similar to
Merge Trees in Section 2.4. It also operates in two
phases, where the first phase is a preprocessing phase
and the second phase traverses T1. The first phase of
One-Way Compatible performs all the steps from the
first phase of Merge Trees, plus a bottom-up traversal
of T1 to obtain and store, for every u ∈ V (T1), the value
size(u) := |Λ(T1[u])|.

The second phase of One-Way Compatible differs
from that of Merge Trees. Instead of inserting new
nodes into T2, it deletes all nodes from T1 whose
associated clusters are not compatible with T2. To
check if Λ(T1[u]) for any u ∈ V (T1) is compatible
with T2 in O(1) time, apply the following technique
(refer to Section 2.4 for explanations of the notation
used below). Assign a := start(u) and b := stop(u),
and let a′ and b′ be the elements of L such that
leaf rank(a′) = a and leaf rank(b′) = b. Compute
ru := lcaT2({a′, b′}) in O(1) time by querying the lca
data structure. Next, if depth(a′

left) > depth(ru) then
define du := a′

left ; otherwise, define du := the leftmost
child of ru. Similarly, if depth(b′right ) > depth(ru) then
define eu := b′right ; otherwise, define eu := the rightmost
child of ru. The value |Λ(T1[u])| is retrieved from size(u)
in O(1) time. Then:

Lemma 4.1. Λ(T1[u]) is compatible with T2 if and only
if: (i) the parent of du is ru; (ii) the parent of eu is ru;
and (iii) |Λ(T1[u])| = b− a + 1.

Proof. Let C denote the cluster Λ(T1[u]). Lemma 2.2
states that C is compatible with T2 if and only if
C = Λ(T2[ci]) ∪ Λ(T2[ci+1]) ∪ · · · ∪ Λ(T2[cj ]) for some
consecutive subsequence ci, ci+1, . . . , cj of the children
of the node ru.

(→) Suppose C = Λ(T2[ci]) ∪ · · · ∪ Λ(T2[cj ]), where
ci, . . . , cj is a consecutive subsequence of children of ru.
If i = 1 then du is the leftmost child of ru by definition.
If i > 1 then a′ is the leftmost leaf in T2[ci] and
du = a′

left must be child of ru because otherwise, there
would exist some other leaf from C to the left of a′,
which is impossible. Therefore, du is always a child
of ru, and we have (i). An analogous argument shows
that (ii) also holds. To prove (iii), note that the |C|
elements of C occur as a consecutive block starting
at position a and ending at position b in the left-to-
right ordering of the leaves in T2, which means that
|C| = b− a + 1.

(←) Suppose (i), (ii), and (iii) hold. By the definition
of a′

left , the leftmost leaf descendant of every node

on the path in T2 between a′ and a′
left is a′. Thus,

the leftmost leaf descendant of du is a′. In the same
way, the rightmost leaf descendant of eu is b′. Then,
conditions (i) and (ii) imply that C ⊆ Λ(T2[du]) ∪ · · · ∪
Λ(T2[eu]), where du, . . . , eu is a consecutive subsequence
of children of ru. There are exactly b − a + 1 leaves
in the interval a′..b′ in the left-to-right ordering of T2,
so |Λ(T2[du]) ∪ · · · ∪ Λ(T2[eu])| = b − a + 1. From
condition (iii), |C| = |Λ(T2[du])∪ · · ·∪Λ(T2[eu])|, which
shows that C = Λ(T2[du]) ∪ · · · ∪ Λ(T2[eu]), where
du, . . . , eu is a consecutive subsequence of children of ru.
�

Now, the second phase of One-Way Compatible is:
For each u ∈ V (T1), apply Lemma 4.1 and if Λ(T1[u]) is
compatible with T2 then mark u as “good”; otherwise,
mark u as “bad”. Next, traverse T1 in top-down order
and for each node u ∈ V (T1) encountered, if u is “bad”
then perform a delete operation on u.

In total, the first phase takes O(n) time. The
time complexity of the second phase is O(n) because
each compatibility check takes O(1) time by applying
Lemma 4.1. Also, the total time needed for all node
deletions is O(n) since whenever a node u in T1 is
deleted, the children of u are moved but those nodes will
never need to be moved again because of the top-down
order. Hence, the contribution to the total running time
of each node is (at most) proportional to the number of
children it has, and the sum of the number of children
taken over all nodes in T1 is O(n).

Theorem 4.1. Procedure One-Way Compatible(T1,T2)
runs in O(n) time, where n = |L|.

4.2 Algorithm Loose Cons Tree. First, for any j ∈
{1, . . . , k}, we define the set of one-way compatible

clusters up to j as the set Oj =
⋃j

i=1{C ∈ C(Ti) :
C is compatible with all trees in {Ti, Ti+1, . . . , Tj}}. It
is easy to see that:

Lemma 4.2. For any j ∈ {1, . . . , k}, all clusters in Oj

are pairwise compatible.

Proof. Consider any two clusters C,C ′ ∈ Oj . If j = 1
or if C and C ′ occur in the same tree Ti then the
lemma is trivially true. Therefore, assume without loss
of generality that j ≥ 2 and C ∈ C(Ti) and C ′ ∈ C(Ti′),
where i < i′ ≤ j. Since C ∈ Oj , C is compatible with
all trees in {Ti, . . . , Tj} and thus compatible with Ti′ .
This means that C and C ′ are pairwise compatible. �

Then, according to Theorem 3.5.2 in [22], the set Oj

equals the cluster collection of a uniquely defined tree
for each j ∈ {1, . . . , k}. Define Rj to be the tree
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with C(Rj) = Oj . Clearly, R1 = T1. To obtain Rj for
any j ∈ {2, . . . , k}, we shall use the following recursive
formulation:

Lemma 4.3. Let j ∈ {2, . . . , k} and A =
One-Way Compatible(Rj−1, Tj). Then
Merge Trees(A, Tj) is equal to the tree Rj.

Proof. By definition, C(Rj−1) = Oj−1, and A =
One-Way Compatible(Rj−1, Tj) is a tree whose clus-
ter collection C(A) is the subset of C(Rj−1) con-
sisting of those clusters that are also compatible
with Tj . Thus, C(A) =

⋃j−1
i=1 {C ∈ C(Ti) :

C is compatible with all trees in {Ti, . . . , Tj}}.
Consequently, Merge Trees(A, Tj) returns a tree

whose cluster collection is equal to C(A) ∪ C(Tj).
Trivially, all clusters occurring in Tj are compati-

ble with Tj , so C(A) ∪ C(Tj) =
⋃j

i=1{C ∈ C(Ti) :
C is compatible with all trees in {Ti, . . . , Tj}} = Oj .
Hence, this tree is equal to Rj . �

Next, we show that C(T ) ⊆ C(Rk), where T is the
loose consensus tree of S.

Lemma 4.4. Let T be the loose consensus tree of S.
Every cluster that occurs in T also occurs in Rk.

Proof. Let C be any cluster in C(T ). By the definition
of the loose consensus tree, C ∈ C(Tj) for some
j ∈ {1, . . . , k} and C is compatible with all trees in
{T1, . . . , Tk}. In particular, C is compatible with the
trees {Tj , . . . , Tk}, so C ∈ Ok, i.e., C occurs in Rk. �

As suggested by Lemma 4.4, one strategy for com-
puting the loose consensus tree of S is to build the
tree Rk and then remove certain clusters from it. The
next lemma tells us which ones.

Lemma 4.5. Let T be the loose consensus tree of S.
Then C(T ) = {C ∈ C(Rk) : C is compatible with all
trees in {T1, . . . , Tk}}.

Proof. Consider any C ∈ C(Rk). Then for some i ∈
{1, . . . , k}, C ∈ C(Ti) and C is compatible with all
trees in {Ti, . . . , Tk}. If C is also compatible with
all trees in {T1, . . . , Tk}} then C belongs to the set

{C ∈ ⋃k
i=1 C(Ti) : C is compatible with all trees in

{T1, . . . , Tk}}, which is equal to C(T ) by the definition
of the loose consensus tree.

For the other direction, consider any C ∈ C(T ).
Then C ∈ C(Rk) by Lemma 4.4, and C is compatible
with all trees in {T1, . . . , Tk} by the definition of the
loose consensus tree. �

Algorithm Loose Cons Tree is shown in Figure 5.
Its correctness follows from Lemmas 4.4 and 4.5. To an-
alyze its time complexity, observe that every execution

Algorithm Loose Cons Tree

Input: A set S = {T1, T2, . . . , Tk} of trees with
Λ(T1) = Λ(T2) = · · · = Λ(Tk).

Output: The loose consensus tree of S.

1 R1 := T1

2 for j := 2 to k do

A := One-Way Compatible(Rj−1, Tj)

Rj := Merge Trees(A, Tj)

3 T := Rk

4 for j := 1 to k do

T := One-Way Compatible(T, Tj)

5 return T

End Loose Cons Tree

Figure 5: Algorithm Loose Cons Tree for constructing
the loose consensus tree.

of One-Way Compatible takes O(n) time according to
Theorem 4.1 and every execution of Merge Trees takes
O(n) time by Theorem 2.2, so Step 2 takes O(nk) time.
For the same reason, Step 4 takes O(nk) time. We have:

Theorem 4.2. Algorithm Loose Cons Tree constructs
the loose consensus tree of S in O(nk) time.

5 Constructing a greedy consensus tree

We now give an algorithm for building a greedy consen-
sus tree of S in O(nq) = O(n2k) time. Recall that p is
the number of different clusters and q the total number
of clusters occurring in S, with repetitions.

A straightforward implementation of the method
outlined in Section 2.1.4 in [5] (summarized in Sec-
tion 1.1 above) leads to a time complexity of O(nq +
n2p) = O(n3k). Our improvement comes from elim-
inating one of the bottlenecks: Instead of first build-
ing a maximal set Y of pairwise compatible clusters in
O(n2p) time and then constructing a tree T from Y, we
build T directly by inserting one cluster at a time, using
an O(n)-time method made possible by Theorem 4.2.

Lemma 5.1. For any tree T and C ⊆ Λ(T ) with C 6∈
C(T ), it is possible to determine if C is compatible
with T , and if so, insert C into C(T ) in O(n) time,
where n = |Λ(T )|.

Proof. Create a tree T ′ with Λ(T ′) = Λ(T ) in which all
leaves belonging to C have a common parent node at-
tached to the root of T ′ and all leaves in Λ(T ′) \ C
are attached to the root directly. Clearly, the only
non-trivial cluster occurring in T ′ is C. Let Tloose

be the loose consensus tree of {T, T ′}. By definition,
C is compatible with T if and only if C(Tloose) =
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Algorithm Greedy Cons Tree

Input: A set S = {T1, T2, . . . , Tk} of trees with
Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L.

Output: A greedy consensus tree of S.

1 Fix an arbitrary ordering of L. For each Ti ∈ S, do a
bottom-up traversal of Ti to compute a bit vector of
length n for each node u that indicates which leaves
belong to Λ(Ti[u]).

2 Put all of the resulting bit vectors (q in total) in
a list W, sort W, and do a single scan of W to
identify the p different clusters in S and the number
of occurrences of each one.

3 Store the different clusters of S and their frequencies
in a list X . Sort X in order of non-increasing
frequency.

4 Let T be a tree consisting of a root node attached
to n leaves labeled by L.

5 for i := 1 to p do

If the ith cluster of the list X is non-trivial then

try to insert it into C(T ) as described in

Lemma 5.1.

6 return T

End Greedy Cons Tree

Figure 6: Algorithm Greedy Cons Tree for constructing
a greedy consensus tree.

C(T ) ∪ {C} and |C(Tloose)| = |C(T )| + 1. Run Algo-
rithm Loose Cons Tree on {T, T ′}, which takes O(n)
time according to Theorem 4.2, and let Tloose be its
output. If the number of nodes in Tloose is larger than
that of T (i.e., if the cluster C has been inserted) then
let T := Tloose ; otherwise, answer “C is not compatible
with T”. �

Our algorithm is named Greedy Cons Tree and is
listed in Figure 6. Steps 1–2 are straightforward and
take O(nq) time by using radix sort to sort W. Step 3
sorts p integers belonging to {1, 2, . . . , k}, which takes
O(k+p) time with counting sort. Step 4 uses O(n) time,
and Step 5 takes O(np) time because of Lemma 5.1. The
total time complexity is therefore O(nq+k+p+n+np) =
O(nq).

Theorem 5.1. Algorithm Greedy Cons Tree con-
structs a greedy consensus tree of S in O(nq) time.

6 Implementations and experimental results

We implemented our algorithms for constructing ma-
jority rule, loose, and greedy consensus trees in the
C++ programming language. Section 6.1 below de-
scribes a number of modifications that were made to

obtain fast running times in practice. Observe that the
modified algorithms achieve the same worst-case time
complexities as in Sections 3–5 and remain fully deter-
ministic. Specifically, we still do not use randomization
and hash tables for storing clusters.

After implementing the algorithms, we ran them
on simulated data sets of varying sizes and compared
their running times to those of some freely available,
widely used software: PHYLIP [10], SumTrees in Den-
droPy [24], and COMPONENT [20]. (We did not com-
pare our methods to PAUP* [26] because it is commer-
cial software which we did not have access to.) The
results are reported in Section 6.2.

We have combined our prototype implementations
into a package which we call FACT (Fast Algorithms for
Consensus Trees). A web interface to FACT has been
set up at:

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree

The source code of FACT may also be obtained from
there, or directly from the authors.

6.1 Fast implementations of our algorithms

Majority rule consensus tree: Algorithm
Maj Rule Cons Tree in Section 3 uses recursion
to build the majority rule consensus tree. To speed up
its implementation, we eliminate some of the overhead
for small instances by breaking the recursion at k = 2
and switching over to a naive method at this point,
instead of letting the recursion run all the way down to
k = 1.

Majority rule consensus tree and loose consen-
sus tree: A special data structure that can answer
lca-queries in O(1) time after linear-time preprocess-
ing [3] was used in the descriptions of the procedures
Merge Trees in Section 2.4 and One-Way Compatible in
Section 4.1. Although this leads to conceptually simple
and asymptotically optimal algorithms, the linear-time
preprocessing has a high constant factor. A faster (and
more easily codable) alternative that does not need [3]
is presented below.

We use the same definitions as in Sections 2.4
and 4.1. For any node u ∈ V (T1), let a := start(u),
b := stop(u), and let a′ and b′ be leaves in L such that
leaf rank(a′) = a and leaf rank(b′) = b. If we refer
back to Lemma 4.1, it seems that the lca is required
because we need to check whether the parent of du and
the parent of eu are both equal to ru. However, we can
make use of the correctness of Lemma 4.1 to deduce
that Λ(T1[u]) is compatible with T2 if and only if:
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• depth(parent(du)) ≤ depth(ru) and
depth(parent(eu)) ≤ depth(ru).

• The path from a′ to parent(a′
left) and the path

from b′ to parent(b′right) intersect and therefore
share at least one common internal node.

• The internal node common to these two paths
which has the greatest depth is lca(a′, b′).

We construct and store these paths explicitly during
the preprocessing phase. For each leaf x, we store the
path from x to xleft in left path(x) and the path from x
to xright in right path(x). By using resizable arrays to
store the paths, we can query for a node at a certain
depth along any path in O(1) time.

Given a′ and b′, we assume without loss of gen-
erality that depth(a′

left) ≥ depth(b′right ). We query
right path(b′) for the node on the path from b′ to b′right
that is at depth depth(a′

left). Let p1 := a′
left and p2 :=

the corresponding vertex on the path from b′ to b′right .
There are two possibilities:

• If p1 = p2, then p1 is the lca of a′ and b′, i.e.,
ru = p1. From this, we deduce that du is the node
on left path(a′) at depth depth(a′

left) + 1, and eu is
the node in right path(b′) at the same depth.

• If p1 6= p2 and parent(p1) = parent(p2), then
parent(p1) = lca(a′, b′) = ru. Therefore, p1 = du

and p2 = eu.

After finding ru, du, and eu in this way, the procedures
Merge Trees and One-Way Compatible continue their
execution as described in Section 2.4 and 4.1.

Greedy consensus tree: Step 5 of Algorithm
Greedy Cons Tree in Section 5 checks if given clus-
ter C is compatible with the current tree T , and if
so, inserts it. Lemma 5.1 in Section 5 demonstrated
how to do this step in O(n) time by applying Algo-
rithm Loose Cons Tree from Section 4. However, since
we only need to check a cluster C (rather than an en-
tire tree), the following direct approach, with the same
asymptotic worst-case running time, turns out to be
more efficient in practice:

Perform a bottom-up traversal of T and for each
node u ∈ V (T ), calculate the number of leaves from C
that are in Λ(T [u]). Let num(u) denote this number. To
compute num(u), use the formula num(u) =

∑

num(ci)
for every ci ∈ V (T ) that is a child of u. The first node u
encountered in the bottom-up traversal that satisfies
num(u) = |C| is the lowest common ancestor of C
in T . Now, determine if C is compatible with T [u] by
checking if num(ci) = |Λ(T [ci])| or 0 for every child ci

of u. This takes O(n) time and the correctness follows
from Lemma 2.1.

If C is compatible with T then insert it as follows:
Let u = lcaT (C) be the node found during the bottom-
up traversal described above. Create a new node v,
let v be a child of u, let every child ci of u satisfying
num(ci) = |Λ(T [ci])| become a child of v instead, and
return the modified T . Since we change the parent-
child relationship of each node at most once, the time
complexity of this procedure is also O(n).

Constant optimizations: The computationally most
intensive part of Greedy Cons Tree is the enumeration
and counting of clusters in Step 2. Clusters are rep-
resented as bit vectors of length n, so to speed up the
operations on clusters, we use words of length ℓ to com-
press each bit vector into ⌈n

ℓ ⌉ words. Then, any two
clusters can compared in O(n

ℓ ) time, allowing the enu-
meration and counting of clusters in Step 2 to be done

in O(nq
ℓ ) = O(n2k

ℓ ) time.

6.2 Experimental results

Simulated data sets: For certain specified values of n
and k, we generated a data set as follows. First, a
random tree T with n distinctly labeled leaves was
created. Here, T would represent a “true” underlying
phylogenetic tree. Next, a set S of k conflicting trees
with the same leaf label sets was derived from T by
applying random mutations to k copies of T . Two kinds
of mutations were used:

• Delete an internal node v, and attach the children
of v to the parent of v.

• Disconnect a node v, and reattach it to some
ancestor of the parent of v.

Before and after each mutation, the following invariant
was maintained:

Every internal node has at least two children,
and no leaf has any children.

The methods: We evaluated the nine different meth-
ods listed below. As before, n = the number of leaves,
k = the number of trees, p = the number of distinct
clusters, and q = the number of clusters (including rep-
etitions).

• M-PHYLIP: The majority rule consensus tree
method in PHYLIP [10]. It counts the occurrences
of each cluster using hashing, and constructs the
consensus tree from the clusters that occur more
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than k
2 times. Since hashing is used, this method

has expected time complexity O(nk).

• M-SumTrees: The majority rule consensus tree
method in SumTrees, which is part of Den-
droPy [24]. The documentation for the imple-
mented algorithm was unavailable.

• M-Näıve: A self-implemented, naive algorithm for
computing the majority rule consensus tree, based
on [27]. Given S = {T1, . . . , Tk}, it runs Day’s
algorithm (see Section 2.1) O(k) times, using each
tree in S as the reference tree Tref and comparing
it against all others to count the occurrences of
clusters. A consensus tree is constructed from those
clusters that appear more than k

2 times. The time
complexity of this algorithm is O(nk2).

• M-Fast: An implementation of our new major-
ity rule consensus tree algorithm described in Sec-
tions 3 and 6.1. Its time complexity is O(nk log k).

• L-Näıve: A self-implemented, naive algorithm for
computing the loose consensus tree. First, all clus-
ters in the input trees are extracted as bit vectors
and the distinct clusters are retrieved. Every pair
of distinct clusters is checked for pairwise compat-
ibility, and the set of clusters compatible with all
other clusters is then used to construct the con-
sensus tree. Applying the constant optimizations
mentioned in Section 6.1 gives a time complexity

of O(nq
ℓ + p2n

ℓ + n2). For this implementation, we
set ℓ = 60.

• L-Fast: An implementation of our new loose
consensus tree algorithm described in Sections 4
and 6.1. Its time complexity is O(nk).

• G-PHYLIP: The greedy consensus tree method
in PHYLIP [10]. Like M-PHYLIP, the occurrences
of the clusters are counted by hashing. Then, the
clusters are processed in non-increasing order of
the number of occurrences and a maximal set of
pairwise compatible clusters is created. Checking
whether two clusters are compatible is sped up to
O(n

ℓ ) by using words of length ℓ. The expected

time complexity is O(q + n2q
ℓ + n2).

• G-Näıve: A naive variant of the algorithm used
in G-PHYLIP. The difference is that hashing is not
used to count the clusters. Instead, words of length
ℓ = 60 are used to speed up the computations. The

time complexity is O(nq
ℓ + nq2

ℓ + n2).

• G-Fast: An implementation of our new greedy
consensus tree algorithm described in Sections 5
and 6.1. Its time complexity is O(nq

ℓ + np). For
this implementation, we set ℓ = 60.

In addition to the above, the program COMPO-
NENT [20] was also considered. This software uses
hashing to compute its results. However, COMPO-
NENT seems to have a built-in limit on the number
of leaves, and crashes when n > 100. For this reason, it
was not evaluated in our experiments.

Testing: All experiments were carried out on Ubuntu
Nutty Narwhal, a 64-bit operating system with 8.00 GB
RAM, and a CPU running at 2.20 GHz.

We used the following combinations of the parame-
ters n and k:

• (a) n = 500, k = 1000

• (b) n = 1000, k = 500

• (c) n = 2000, k = 1000

• (d) n = 5000, k = 100

• (e) n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k = 100

For each of (a)–(d), we generated 10 data sets, applied
the methods, and measured their running times. The
worst-case and average running times (in seconds) are
reported below. The purpose of case (d) was to
demonstrate that our method M-Fast is much faster
than M-PHYLIP when n ≫ k. (The reason is that in
this case, the log k-factor in the running time becomes
almost negligible.) Thus, we did not run the other
methods for (d). In (e), we generated at least 3 data sets
for each specified value of n and plotted the methods’
worst-case running times against each other in order to
visualize the differences between them for a small, fixed
value of k.

Experimental results:

(a) n = 500, k = 1000:

Worst-case Average

M-PHYLIP 1.94 1.88
M-SumTrees 91.18 89.55

M-Näıve 291.19 274.96
M-Fast 8.10 8.00
L-Näıve 8.00 7.12
L-Fast 5.34 5.16

G-PHYLIP 2.94 2.67
G-Näıve 4.34 4.14
G-Fast 4.10 3.76
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(b) n = 1000, k = 500:

Worst-case Average

M-PHYLIP 3.50 3.19
M-SumTrees 134.62 131.77

M-Näıve 138.23 134.69
M-Fast 7.54 7.38
L-Näıve 26.88 24.80
L-Fast 5.33 5.15

G-PHYLIP 6.56 5.99
G-Näıve 11.55 10.75
G-Fast 6.59 6.23

(c) n = 2000, k = 1000:

Worst-case Average

M-PHYLIP 34.07 30.03
M-SumTrees 932.12 918.55

M-Näıve 1100.69 1089.57
M-Fast 32.24 31.96
L-Näıve 335.31 319.03
L-Fast 22.11 21.85

G-PHYLIP 67.19 63.09
G-Näıve 115.72 111.78
G-Fast 41.32 40.08

(d) n = 5000, k = 100:

Worst-case Average

M-PHYLIP 93.25 90.04
M-SumTrees — —

M-Näıve — —
M-Fast 6.41 6.27
L-Näıve — —
L-Fast — —

G-PHYLIP — —
G-Näıve — —
G-Fast — —

(e) n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k = 100:

In the following three diagrams, the horizontal axis
represents n and the vertical axis represents the worst-
case running time (in seconds).

Discussion: Based on the experimental results, we see
that the improved consensus tree algorithms perform
much better than their naive counterparts, as expected.
We also see that our prototype implementations are
competitive against the currently available software,
even though our algorithms do not use any random-
ization.

• Our improved majority consensus tree algorithm
performed better than SumTrees and COMPO-
NENT for all data sets. Furthermore, it was signif-
icantly faster than PHYLIP when n was large and
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k was small (n = 5000, k = 100). On the other
hand, for small n, PHYLIP was better. For the
case n = 2000, k = 1000, they had roughly the
same running times, with PHYLIP being slightly
faster on average and our algorithm being slightly
faster in the worst case.

• Our improved loose consensus tree algorithm could
handle much larger data sets than COMPONENT
and ran quickly, producing a solution for the data
set with n = 2000, k = 1000 in a little over
20 seconds.

• Our improved greedy consensus tree algorithm was
slower than PHYLIP when n and k were small and
n ≪ k. However, it outperformed PHYLIP as the
data sets got larger and n≫ k.

We conclude that hashing is not always necessary to
obtain fast algorithms for constructing consensus trees.

7 Final remarks

To end this paper, we briefly mention a few other
useful types of consensus trees and some related open
problems. As above, let S = {T1, T2, . . . , Tk} be a set
of trees satisfying Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L for
some leaf label set L of cardinality n.

First, a strict consensus tree of S [23] is a tree T
with Λ(T ) = L containing precisely those clusters that

occur in every tree in S, i.e., C(T ) =
⋂k

i=1 C(Ti). This
type of consensus tree is well understood [5, 9, 25].
The advantages of the strict consensus tree is that it
is always unique and can be computed quickly; the
algorithm by Day [7] (see Section 2.1) can compute
it in (optimal) O(nk) time. The disadvantage of the
strict consensus tree is that it often discards valuable
branching information. For example, in Figure 1, only
the trivial clusters occur in every tree in S, so the strict
consensus tree of S is just a root node directly attached
to the leaves a, b, c, d, e.

Secondly, an R* consensus tree of S [5] is a tree T
with Λ(T ) = L that contains as embedded subtrees as
many so-called rooted triplets as possible from a special
set Rmaj and no other rooted triplets; see [5, 8, 13]
for the definition. An R* consensus tree provides
a statistically consistent estimator of the species tree
topology when combining a set of gene trees [8]. On the
negative side, it is still not known how to compute it
efficiently. The currently fastest methods run in O(n3k)
time for unbounded k [5, 13] and in O(n2

√
log n) time

when k = 2 [13]. It is an open problem to reduce their
running times.

Thirdly, extensions of consensus trees to multi-
labeled phylogenetic trees (MUL-trees), where the same

leaf label may be used more than once in the same tree,
were recently introduced by [15] and further studied
in [6, 12]. Here, a major obstacle is that MUL-trees’
cluster collections are no longer sets but multisets, and
certain basic problems become NP-hard when extended
to multisets. An important task is to define informa-
tive types of consensus MUL-trees that admit efficient
algorithms.

For further discussions on the advantages and dis-
advantages of different types of consensus trees, see [5,
8, 9, 25].
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