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Abstract. We study the problem of computing the Voronoi diagram of a set of 
.n2 points with.O(log n)-bit coordinates in the Euclidean plane in a substantially 
sublinear in . n number of rounds in the congested clique model with . n nodes. 
Recently, Jansson et al. have shown that if the points are uniformly at random dis-
tributed in a unit square then their Voronoi diagram within the square can be com-
puted in.O(1) rounds with high probability (w.h.p.). We show that if a very weak 
smoothness condition is satisfied by an input set of .n2 points with .O(log n)-bit 
coordinates in the unit square then the Voronoi diagram of the point set within the 
unit square can be computed in .O(log n) rounds in this model. 

Keywords: Voronoi diagram · Delaunay triangulation · convex hull · 
distributed algorithm · the congested clique model 

1 Introduction 

The congested clique is a relatively new model of communication and computation 
introduced by Lotker et al. in 2005 [ 9]. It focuses on the cost of communication between 
the nodes in a network, ignoring the cost of local computation within each node. Hence, 
it can be seen as opposite to the Parallel Random Access Machine (PRAM) model, 
studied extensively in the 80 s and 90 s. The PRAM model focuses on the computation 
cost and ignores the communication cost [ 1]. 

Originally, the complexity of dense graph problems has been studied in the con-
gested clique model under the following assumptions. Each node of the congested 
clique represents a distinct vertex of the input graph and knows its neighborhood in 
the graph. Every node also knows the unique ID numbers (between . 1 and . n) of itself 
and all the other nodes at the start of the computation. The computation proceeds in 
rounds. In each round, each of the . n nodes can send a distinct message of .O(log n) bits 
to each other node and can perform unlimited local computation. The primary complex-
ity objective is to minimize the number of rounds necessary to solve a given problem 
on the input graph in this model. 
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For several basic graph problems such as the minimum spanning tree problem, one 
has even succeeded to design .O(1)-round protocols in the congested clique model [ 11, 
14]. Observe that when the input graph is of bounded degree and the edge weights 
have .O(log n)-bit representations, each node can send the ID numbers of all nodes in 
its neighborhood and the weights of its incident edges, e.g., to the first node in . O(1)
rounds. After that, the first node can solve the whole problem locally. However, such a 
trivial solution would require .Ω(n) rounds when the input graph is dense. 

Matrix problems [ 3], sorting and routing [ 7], and geometric problems [ 6] have  
also been studied in the congested clique model. In all cases, the basic input items, 
i.e., matrix entries or keys, or points in the plane, respectively, are assumed to have 
.O(log n)-bit representations and each node initially has a batch of . n such items. Note 
that the bound on bit representation of an input item is a natural consequence of 
the .O(log n)-bit bound on the size of a single message which makes input items of 
unbounded bit representation incompatible with the assumed model. As in the graph 
case, in every round, each node can send a distinct .O(log n)-bit message to each other 
node and perform unlimited local computation. Significantly, it has been shown that 
matrix multiplication can be performed in a number of rounds substantially sublinear 
in . n [ 3] while sorting and routing can be implemented in .O(1) rounds (Theorems 4.5 
and 3.7 in [ 7]). 

As for the geometric problems, Jansson et al. [ 6] recently provided low polyloga-
rithmic, deterministic upper bounds on the number of rounds required to solve several 
basic geometric problems for a set of .n2 points in the plane with .O(log n)-bit coor-
dinates in the model of congested clique with . n nodes. As for the construction of the 
Voronoi diagram and the dual Delaunay triangulation of the point set (see Fig. 1 for an 
illustration and Sect. 2 for the formal definition), they have shown an.O(1) upper bound 
on the number of required rounds under the assumption that the points are drawn uni-
formly at random from a unit square. On the other hand, already at the end of the 
90 s, Goodrich presented .O(1)-round randomized protocols for the construction of the 
three-dimensional convex hull of a set of points in three-dimensional Euclidean space 
in .O(1) communication rounds in the so-called Bulk Synchronous Processing model 
(BSP) [ 5]. His result also implies an .O(1)-round bound on the randomized construc-
tion of the Voronoi diagram and the dual Delaunay triangulation of a planar point set 
in the BSP model. By using the.O(1)-round routing protocol of Lenzen [ 7], Goodrich’s 
.O(1) bound on the number of rounds necessary for the construction of the Voronoi 
diagram and Delaunay triangulation can be carried over from the BSP model to ours. 

In this context, the major open problem is to derive a non-trivial upper bound on 
the number of rounds sufficient to deterministically construct the Voronoi diagram 
when the points are not necessarily drawn uniformly at random. The bottleneck in the 
design of efficient parallel or distributed algorithms for the Voronoi diagram of a pla-
nar point set using a direct divide-and-conquer approach is an efficient parallel or dis-
tributed merging of Voronoi diagrams. Aggarwal et al. [ 1] presented an .O(log2 n)-time 
CREW PRAM algorithm for the Voronoi diagram based on an involved .O(log n)-time 
PRAM method for the parallel merging. Subsequently, Amato and Preparata [ 2] demon-
strated an .O(log n)-time CREW PRAM algorithm for the three-dimensional convex 
hull and consequently also for the two-dimensional Voronoi diagram of a point set.
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Fig. 1. An example of a planar point set, its Voronoi diagram, and the dual Delaunay triangulation. 

We substantially extend the local approach to the construction of the Voronoi dia-
gram used in the design of parallel and distributed algorithms for the Voronoi diagram 
of points drawn uniformly at random, e.g., from a unit square [ 6, 8,15]. We show that 
already a very weak smoothness condition on the input set of .n2 points with .O(log n)-
bit coordinates within a unit square is sufficient to obtain an .O(log n) upper bound on 
the number of rounds required to construct the Voronoi diagram of the set within the 
unit square on the congested .n-clique. Roughly, our weak smoothness condition says 
that if a square .Q of side length . � within the unit square contains at least . n out of the 
.n2 input points then any square of the same size at distance at most .4

√
2� from .Q and 

within the unit square has to contain at least one input point. 
We obtain our result by combining a quadtree partition of the unit square with a local 

construction of the Voronoi diagram within the squares corresponding to the leaves of 
quadtree. The local construction is possible due to the fulfillment of the weak smooth-
ness condition. 

In order to simplify the presentation, we assume throughout the paper that the points 
in the input point sets are in general position (i.e., neither any three input points are co-
linear nor any four input points are co-circular). 

Our paper is structured as follows. The next section contains basic mathemati-
cal/geometric definitions, a lemma, and facts on routing and sorting in the congested 
clique model. Section 3 presents our protocol for the Voronoi diagram and Delaunay 
triangulation of a weakly smooth planar point set within a square. In Sect. 4, we con-
clude with final remarks. 

2 Preliminaries 

The cardinality of a set . S is denoted by . |S|.
For a positive integer .r, .[r] stands for the set of positive integers not exceeding . r.
For a finite set . S of points in the Euclidean plane, the Voronoi diagram of . S is the 

partition of the plane into .|S| regions such that each region consists of all points in the 
plane having the same closest point in . S; see Fig. 1. 

A Delaunay triangulation of .S is a maximal set of non-crossing edges between 
pairs of points from .S such that no point from .S is placed inside any of the formed 
triangles’ circumcircles. It is well known that if no four points in . S are co-circular then
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the Delaunay triangulation of . S is a dual of the Voronoi diagram of . S in the following 
sense [ 13]: for each edge . e of each region in the Voronoi diagram of . S, if . e is a part of 
the bisector of the points .u, v in . S then .(u, v) is an edge of the Delaunay triangulation 
of . S; again, see Fig. 1. 

Our concept of weak smoothness is formally defined in terms of two parameters as 
follows. 

Definition 1. Let .ε, d be two positive real constants. A set of .N points in a unit square 
is .(ε, d)-smooth if for any two equal size squares .Q, R within the unit square the 
following implication holds: 

if .Q contains at least .Nε points of . S and . R is at distance at most .d ·� from . Q, where 
. � is the length of each edge of .Q and . R, then .R contains at least one point of . S. 

We also need to define a sequence of grids within a unit square and related notions. 

Definition 2. For a nonnegative integer . i, we shall denote by .Gi(U) the orthogonal 
grid within the unit orthogonal square .U that includes the edges of .U such that the 
distance between two neighboring vertical or horizontal grid line segments is . 12i . A 
basic square of .Gi(U) is a square within .U such that the endpoints of each its edge 
is a pair of neighboring grid points. For a basic square .R in .Gi(U), we shall denote 
the orthogonal region consisting of .R and the two layers of basic squares around .R by 
.TLi(R) (if between .R and an edge of the unit square there is a place only for one or 
zero layers then .TLi(R) includes only one or zero layers on this side, respectively). 

Fig. 2. An example of the configuration in the proof of Lemma 1. 

The proof of the following lemma corresponds to the second paragraph of the proof 
of Theorem 4 in [ 6].
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Lemma 1. Let .R be a basic square in a grid .Gi(U) within the unit square . U . Consider 
a finite set . S of points within the unit square. If . R contains a point in . S then the Voronoi 
diagram of .S within .R can be computed by taking into account only the points of . S
within .TLi(R). Hence, in particular all edges .(u, v) of the Delaunay triangulation of 
. S such that a part of the bisector of . u and . v borders some region of the Voronoi diagram 
of . S within .R can be determined. 

Proof. Let . e be an edge of the Voronoi diagram of . S within . R. The edge . e has to be 
a part of the bisector of some couple of points .s1 and .s2 in .S. Consider an arbitrary 
point . q on . e. Suppose that .s1 or .s2 is placed outside .TLi(R), i.e., the orthogonal area 
consisting of at most .1 + 8 + 16 = 25 squares including . R. See Fig. 2. Without loss of 
generality, let .s2 be such a point. Then the distance between . q and .s2 is at least .2 · 1

2i , 
while the distance between . q and every point inside .R is at most .

√
2 · 1

2i . We obtain 
a contradiction because .R contains at least one point from . S and . q is closer to such a 
point than to . s2. . ��

Lenzen gave an efficient solution to the following fundamental routing problem in 
the congested clique model, known as the Information Distribution Task (IDT) [ 7]: 
Each node of the congested .n-clique holds a set of exactly .n .O(log n)-bit messages 
with their destinations, with multiple messages from the same source node to the same 
destination node allowed. Initially, the destination of each message is known only to 
its source node. Each node is the destination of exactly . n of the aforementioned mes-
sages. The messages are globally lexicographically ordered by their source node, their 
destination, and their number within the source node. For simplicity, each such message 
explicitly contains these values, in particular making them distinguishable. The goal is 
to deliver all messages to their destinations, minimizing the total number of rounds. 

Lenzen proved that IDT can be solved in.O(1) rounds (Theorem 3.7 in [ 7]). He also 
noted that the relaxed IDT, where each node is required to send and receive at most . n
messages, reduces to IDT in.O(1) rounds. From here on, we shall refer to this important 
result as: 

Fact 1 [ 7]. The relaxed Information Distribution Task can be solved deterministically 
within .O(1) rounds. 

The Sorting Problem (SP) is defined as follows: 
Each node . i of the congested .n-clique holds a set of .n .O(log n)-bit keys. All the keys 
are different w.l.o.g. Each node. i needs to learn all the keys of indices in. [n(i−1)+1, ni]
(if any) in the total order of all keys. 

Lenzen showed that SP can be solved in .O(1) rounds if each node holds a set of 
exactly . n keys (Theorem 4.5 in [ 7]). In order to relax the requirement that each node 
holds exactly . n keys to that of with most . n keys, we can determine the maximum key 
and add appropriate different dummy keys in .O(1) rounds. We summarize this result 
as: 

Fact 2 [ 7]. The relaxed Sorting Problem can be solved in .O(1) rounds.
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3 The Local Approach 

Consider a .( 12 , 4
√

2)-smooth set of .n2 points with .O(log n)-bit coordinates in a unit 
orthogonal square. We shall first describe a protocol for listing the edges of the Delau-
nay triangulation of the set that are dual to the edges of the Voronoi diagram of the set 
within the unit square. Roughly, it implicitly grows a quadtree of squares rooted at the 
unit square in phases corresponding to the levels of the quadtree. If a square .R cur-
rently at a leaf of the quadtree jointly with the two layers of equal size squares around 
it include at most .cn input points, for an appropriate positive constant . c, then the inter-
section of the Voronoi diagram of the input point set with .R and the dual edges of the 
Delaunay triangulation of the input point set can be computed locally. This follows from 
the smoothness condition and Lemma 1 combined with the fact that the parent square of 
. R jointly with the two layers of equal size squares around it include more than.cn input 
points. Otherwise, four child squares whose union forms. R are created on the next level 
of the quadtree. In particular, checking the aforementioned condition in parallel for the 
squares at the current front level of the quadtree and delivering the necessary points 
to the nodes representing respective frontier squares in .O(1) rounds on the congested 
.n-clique are highly non-trivial. 

protocol . DT − SQUARE(S,U)

Input: A  .( 12 , 4
√

2)-smooth set of .n2 points with .O(log n)-bit coordinates in a unit 
orthogonal square .U held in .n-point batches at the . n nodes of the congested clique. 
Output: The set of the edges of the Delaunay triangulation of . S dual to the edges of the 
Voronoi diagram of . S within .U held in .O(n)-edge batches at clique nodes. 

1. Initialize an empty list . L of edges of the Delaunay triangulation of . S. 
2. Activate the basic square .U in .G0(U) and assign it to the first node. 
3. For .i = 0, 1, . . . do 

(a) Each node for each point . p in its batch determines the number .num(p) of the 
basic square of .Gi(U) containing . p in a common fixed numbering of the basic 
squares in.Gi(U) (e.g., column-wise and top-down-wise in each column). Next, 
a prefixed representation of . p is formed by the concatenation of the fixed size 
bit representation of .num(p) with the fixed size bit representations of the coor-
dinates of . p. 

(b) The points in . S are sorted by their prefixed representation. After that each node 
informs all other nodes about the range of numbers of the basic squares in. Gi(U)
holding the prefixed representations of points in . S that landed at the node after 
the sorting of the prefixed representations of all the points. 

(c) For each basic square .W in .Gi(U) such that the prefixed representations of 
points belonging to .W that are held in a sequence .C of at least two consecutive 
nodes, the nodes in. C inform additionally the other nodes in. C about the number 
of the prefixed representations of the points in .W they got so in particular the 
node in .C with the smallest index can compute the total number of the points in 
.W . 

(d) For each active basic square. R in .Gi(U), the node representing. R sends queries 
to the nodes holding the prefixed point representations of the points in the basic
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squares in .TLi(R) (i.e., in .R and the two layers of basic squares around .R in 
.Gi(U)) about the number of points in these squares. If several nodes hold the 
prefixed point representation of points in a basic square in .TLi(R), the query is 
sent only to that node with the smallest index. 

(e) After getting answers to the queries, each node proceeds as follows for each 
active basic square in .R in .Gi(U) it represents. If the total number of points 
of . S in .TLi(R) does not exceed .100n then the node asks the nodes holding the 
prefixed representations of the points in the basic squares in.TLi(R) for sending 
the points to the node. After that the node computes the Voronoi diagram of 
all these points and then the intersection of the diagram with .R locally. Next, 
the node appends to .L all edges .(u, v) where a part of the bisector of . u and 
. v borders some region of the Voronoi diagram in the computed intersection. 
Otherwise, the node activates the four squares in .Gi+1(U) whose union forms 
.R and assigns them temporarily to itself. 

(f) The nodes balance the assignment of active basic squares in .Gi+1(U) by 
informing all other nodes about the number of active basic squares in . Gi+1(U)
they are assigned and following the results of the same assignment balancing 
algorithm run by each of them separately locally. 

(g) The list . L is sorted in order to remove multiple copies of the same edge. 

Lemma 2. .DT − SQUARE(S,U) activates basic squares solely in the grids .Gi(U), 
where . i = O(log n).

Proof. Simply, the points in .S have .O(log n)-bit coordinates so at depth at 
most .O(log n) the condition in Step 3(e) of .DT − SQUARE(S,U) has to be 
satisfied. . ��

Fig. 3. An example of the configuration in the proof of Lemma 3. 

Lemma 3. The protocol .DT − SQUARE(S,U) is correct.
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Proof. When the Voronoi diagram of the points of .S in .TLi(R) for a basic square 
.R of the grid .Gi(U) is computed then there must be square .Q′ in the grid . Gi−1(U)
that contains at least .100n/25 points in . S and is at distance at most .

√
2

2i−1 from the basic 
square in.Gi−1(U) that is the parent of.R.Hence, there is a basic square. Q in.Gi(U) that 
is part of .Q′ and contains at least .100n/100 points in . S; see Fig. 3. By straightforward 
calculations, the distance between .Q and .R is at most .4

√
2 1
2i . Thus, by the assumed 

.( 12 , 4
√

2)-smoothness property, the square .R contains at least one point in .S. It follows 
from Lemma 1 that the intersection of the Voronoi diagram of the points of. S in. TLi(R)
with .R yields the Voronoi diagram of . S within .R. Hence, the edges appended to the 
list . L are the edges of the Delaunay triangulation of . S dual to the edges of the Voronoi 
diagram of . S within . U . It easily follows by induction on . i during forming the quadtree 
of active basic squares that the leaf active basic squares form a partition of the unit 
square .U. Therefore, for each edge .(u, v) of the Delaunay triangulation of . S dual to an 
edge of the Voronoi diagram of . S within .U there must exist a positive integer . i and an 
active basic square. R in.Gi(U) such that. R does not have any child active basic squares 
in .Gi+1(U) and a part of the bisector of . u and . v borders some region in the Voronoi 
diagram of . S within . R. Hence, the list . L is complete. . ��
Lemma 4. For .i = 0, 1, . . . , O(log n), the number of active basic squares in the grid 
.Gi(U) is .O(n) during the execution of . DT − SQUARE(S,U).

Proof. We argue similarly as at the beginning of the proof of Lemma 3. If  .R is an 
active basic square in .Gi(U) different from the unit square .U then there must exist a 
basic square .Q in .TLi−1(R′), where .R′ is the parent of .R in .Gi−1(U), such that . Q
contains at least .100n/25 points in .S. Now it is sufficient to note that: (i) there are at 
most .O(n) basic squares in .Gi−1(U) that contain at least .100n/25 points in . S; (ii) 
there are at most .O(1) basic squares .Q′ in .Gi−1(U) different from .R′ such that .Q is 
included in .TLi−1(Q′); (iii) an active basic square in .Gi−1(U) can be a parent to at 
most four active basic squares in .Gi(U). . ��
Lemma 5. The protocol .DT − SQUARE(S,U) can be implemented in . O(log n)
rounds on the congested clique. 

Proof. Steps 1, 2 can be easily implemented in .O(1) rounds. By Lemma 2, the block 
under the for loop in Step 3 is iterated .O(log n) times. It is sufficient to show that this 
block (a-g) can be implemented in .O(1) rounds. 

Step 3(a) can be performed totally locally. 
The sorting of the prefixed representations of points in . S in Step 3(b) can be done 

in .O(1) rounds by Fact 2. 
For each node, the range of the numbers of the basic squares in .Gi(U) holding 

the prefixed representations of points in .S at the node after the sorting of the prefix 
representations of the points can be specified by two .O(log n)-bit numbers. Hence, all 
nodes can inform all other nodes about their ranges in .O(1) rounds. Thus, Step 3(b) 
requires .O(1) rounds in total. 

The situation described in Step 3(c) can happen for at most . n basic squares .W in 
.Gi(U). It requires sending by each node at most two different messages to at most .n
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nodes in total and also receiving at most . n messages. Hence, Step 3(c) can be imple-
mented in .O(1) rounds by using the routing protocol from Fact 1. 

In Step 3(d), for each active basic square, a node representing the square has to 
send .O(1) .O(log n)-bit queries to .O(1) other nodes. The total number of active basic 
squares in .Gi(U) is .O(n) by Lemma 4. Hence, by using the routing protocol from Fact 
1 this task can be done in .O(1) rounds. 

Consider Step 3(e). Answering the queries sent in Step 3(c) can be done by local 
computations and the routing reverse to that in Step 3(d) in.O(1) rounds. After that each 
node for each active square assigned to it determines locally if the criterion for comput-
ing the Voronoi diagram of. S within. R is satisfied. If so the node sends messages asking 
the nodes holding the prefixed representations of points in the squares of .TLi(R) for 
sending the points. This requires sending .O(n) messages for each active basic square 
in .Gi(U). Since the total number of such squares is .O(n) by Lemma 4 and each node 
represents .O(1) active squares in .Gi(U), it can be accomplished in .O(1) rounds by 
Fact 1. Delivering the requested points to the nodes representing respective active basic 
squares can also be done in.O(1) rounds for the following reasons. For each active basic 
square the node representing it needs to receive .O(n) points. Furthermore, by Lemma 
4 there are .O(n) active basic squares in .Gi(U). Hence, since the active squares are 
assigned to the . n nodes in a balanced way, each node needs to receive .O(n) points. 
Also, the points contained in a given basic square in .Gi(U) can be requested by at most 
.O(1) nodes since there are at most .O(1) active basic squares behind these requests to 
the given square. Since the sorted prefixed representations of the points in. S are divided 
between the nodes in a balanced way, each node needs to send .O(n) points, each of 
them to .O(1) nodes. We conclude that this part of Step 3(d) can be implemented in 
.O(1) rounds by Fact 1. The remaining parts of Step 3(d) are done locally. 

Step 3(f) requires sending and receiving by each node .O(1) messages so it can be 
done in .O(1) rounds. 

Consider an edge .(u, v) dual to some edge of the Voronoi diagram of the points 
of . S included in .TLi(R) within an active basic square .R in .Gi(U). The edge can be 
appended to . L at most for .O(1) different squares .R as .u, v are in .TLi(R). Therefore, 
the list . L may contain at most .O(1) copies of an edge of the Delaunay triangulation of 
. S so Step 3(g) can be implemented in .O(1) rounds by using the sorting protocol from 
Fact 2. . ��

Lemmas 3, 5 yield our first main result. 

Theorem 1. Let . S be a .( 12 , 4
√

2)-smooth set of .n2 points with .O(log n)-bit coordinates 
in an orthogonal unit square, held in .n-point batches at the . n nodes of the congested 
clique. The set of edges of the Delaunay triangulation of .S dual to the edges of the 
Voronoi diagram of . S within the unit square can be constructed in .O(log n) rounds on 
the congested clique. 

Lemma 6. Let . S be defined as in Theorem 1. Suppose that a list . L of the edges of the 
Delaunay triangulation of . S dual to the edges of the Voronoi diagram of . S within the 
unit square is held in .O(n)-edge batches at the . n nodes of the congested clique. The 
Voronoi diagram of . S within the unit square can be constructed in .O(1) rounds on the 
congested clique.
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Proof. Double the list .L by inserting for each .(u, v) ∈ L also .(v, u) into .L. For 
each edge .(u, v) determine locally an .O(log n)-bit representation of the angle . β(u, v)
between .(u, v) and the horizontal line passing through . u. For instance, the representa-
tion can specify the tangent of the angle by .(vy − uy, vx − ux). Sort the edges . (x, y)
by .(x, β(u, v)), letting the nodes compare the angle tangents locally, using the sort-
ing protocol from Fact 2. In this way, for each point .u ∈ S, a sub-list of all edges of 
the Delaunay triangulation incident to . u in the angular order is created. Some of the 
sub-lists can stretch through several nodes of the clique network. Given the edges of 
the Delaunay triangulation incident to . u in the angular order, the edges of the Voronoi 
region of . u within the unit square can be easily produced. This is done by intersect-
ing the bisectors of . u and the other endpoints of consecutive edges incident to . u in the 
angular order as long as the intersection of two consecutive bisectors is within the unit 
square. Otherwise, the border of the region of . u has to be filled with the fragment of 
the perimeter of the unit square between the intersections of the two bisectors with the 
perimeter. . ��

Theorem 1 combined with Lemma 6 yield our second main result. 

Theorem 2. Let . S be a .( 12 , 4
√

2)-smooth set of .n2 points with .O(log n)-bit coordinates 
in an orthogonal unit square held in .n-point batches at the . n nodes of the congested 
clique. The Voronoi diagram of . S within the unit square can be constructed in . O(log n)
rounds on the congested clique. 

4 Final Remarks 

The message complexity of a protocol in the congested clique model is the maximum 
total number of .O(log n)-bit messages exchanged by the . n nodes of the congested 
clique during a run of the protocol (e.g., see [ 12]). In case of our protocols, it is easily 
seen to be the product of the maximum number of messages that can be exchanged in a 
single round, i.e., .Θ(n2), times the number of required rounds. Thus, the message com-
plexity of our deterministic protocols for the Delaunay triangulation and the Voronoi 
diagram of .n2 point sets from Sect. 3 is .O(n2 log n). 

The remaining major open problem is the derivation of a low polylogarithmic upper 
bound on the number of rounds sufficient to deterministically construct the Voronoi 
diagram of .n2 points with .O(log n)-bit coordinates in the Euclidean plane (when the 
points are not necessarily randomly distributed) on the congested clique with . n nodes. 
This seems feasible but it might require a substantial effort as in the PRAM case [ 1, 2]. 

Note here that the existence of an .O(log n)-time (unit cost) PRAM algorithm for a 
geometric problem on a point set (e.g., [ 2]) does not guarantee the membership of the 
problem in the.NC1 class defined in terms of Boolean circuits [ 4,10]. Simply, assuming 
that the input points have .O(log n)-bit coordinates, the arithmetic operations of the 
PRAM implemented by Boolean circuits of bounded fan-in have a non-constant depth, 
at least .Ω(log log n). Consequently, the Boolean circuit simulating the .O(log n)-time 
PRAM for fixed input size can have a super-logarithmic depth. This is a subtle and 
important point in the context of relatively recent results of Frei and Wada providing 
simulations of the classes .NCk, .k > 0, by MapReduce (see Theorems 9 and 10 in
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[ 4]), and consequently, in the Massively Parallel Computation (MPC) and BSP models 
(see Theorem 1 in [ 10]). Due to the .O(1)-round routing protocol of Lenzen [ 7], the 
congested clique model in our setting can be roughly regarded as a special case of MPC, 
where the size of the input is approximately the square of the number of processors. For 
this reason, the .NC simulation results from [ 4] are relevant to our model only when 
the parameter . ε in the exponent of the space bounds in [ 4] equals . 12 . This is possible 
in case of Theorem 9 in [ 4] on  .NC1 simulation but not possible in case of Theorem 
10 in [ 4] on  .NCk, k > 0, simulation. However, the proof of the former theorem in [ 4] 
relies on a strict logarithmic upper bound on the depth of Boolean circuit of bounded 
fan-in required by Barrington’s characterization of the .NC1 class in terms of bounded-
width polynomial-size branching programs. Otherwise, one has to adhere to the direct 
circuit simulation method from [ 4] that does not work for.ε = 1

2 . In summary, Theorems 
9 and 10 in [ 4] do not seem to have any direct consequences for geometric problems on 
point sets in our model setting. 
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