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Abstract. It becomes more and more important to search for similar
structures from molecular 3-D structure databases in the structural biol-
ogy of the post genomic era. Two molecules are said to be similar if the
RMSD (root mean square deviation) of the two molecules is less than
or equal to some given constant bound. In this paper, we consider an
important, fundamental problem of finding all the similar substructures
from 3-D structure databases of chain molecules (such as proteins), with
consideration of indels (i.e., insertions and deletions). The problem has
been believed to be very difficult, but its computational difficulty has
not been well known. In this paper, we first show that the same prob-
lem in arbitrary dimension is NP-hard. Moreover, we also propose a new
algorithm that dramatically improves the average-case time complexity
for the problem, in case the number of indels k is bounded by some con-
stant. Our algorithm solves the above problem in average O(N) time,
while the time complexity of the best known algorithm was O(Nmk+1),
for a query of size m and a database of size N .

1 Introduction

Molecules with similar 3-D structures are said to have similar functions. It means
that we can predict the molecular function by searching for molecules with sim-
ilar structures in the databases. Thus, finding similar 3-D structures from 3-D
databases is very important [2,10,12,17]. Due to recent technological evolution
of molecular structure determination methods, more and more structures of bio-
molecules, especially proteins, are solved, as shown in the PDB (Protein Structure
Data Bank) database [3]. Moreover, a huge number of molecular structures are
predicted with various computational techniques recently. Hence, faster search-
ing techniques against these molecular structure databases are seriously needed.

A protein is a chain of amino acids, and its structure is often represented
by a sequence of 3-D coordinates that represents the positions of amino acids.
Usually, the 3-D coordinates of the Cα atom in each amino acid is used as the
representative position of that amino acid. Note that there are also other impor-
tant chain molecules in living cells, such as DNAs, RNAs, and glycans. In this
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paper, we consider a problem of searching for similar structures from a structure
database of chain molecules, which consists of sequences of 3-D coordinates that
represent molecular structures.

The RMSD (Root Mean Square Deviation) [1,9,14,15,17,20,21] is the most
widely-used similarity measure between molecular structures, which is also used
in various other fields, such as robotics and computer vision. It determines ge-
ometric similarity between two same-length sequences of 3-D coordinates. It is
defined as the square root of the minimum value of the average squared distance
between each pair of corresponding atoms, over all the possible rotations and
translations. (See section 2.2 for more details.) The RMSD measure corresponds
to the Hamming distance in the textual pattern matching, from the viewpoint
that it does not consider any indels (i.e., insertions and deletions) between them.
In the case of textual string comparison, especially comparison of two textual
strings of bio-molecules (such as proteins and DNA), we often prefer to use
the string alignment score that considers indels to compare two bio-sequences,
rather than the Hamming distance. Likewise, it is also important to consider
indels when we compare two molecular 3-D structures. But it is much harder
than the textual string cases to compare two 3-D structures with consideration
of indels, though an ordinary pair-wise alignment algorithm for textual strings
requires only quadratic time.

In this paper, we consider a problem of searching for substructures of database
structures whose RMSDs to a given query is within some constant, permitting
indels. It is widely known that the contact map problem [13] is NP-hard and the
structure alignment problems are believed to be very difficult. But the difficulty
of our problem is unknown, as our problem is different from the contact map
problem. We show in this paper that our problem is also NP-hard if the dimen-
sion of the problem is arbitrary. But it does not mean that our problem is always
difficult. If the number of indels is at most some constant, the problem can be
solved in polynomial time, though the time complexity of known algorithms is
still very large. The best-known algorithm for the problem is a straight-forward
algorithm that requires O(Nmk+1) time for a database of size N and a query
of size m, where k is the maximum number of indels. It is the worst-case time
complexity, but the average-case time complexity of the algorithm is still all
the same O(Nmk+1). We propose in this paper a much faster algorithm that
runs in average-case O(N) time, assuming that the database structures can be
considered as random walks. The model under this assumption is called the
’random-walk model’ (It is also called the ‘freely-jointed chain model’ or just
the ‘ideal chain model’. See section 2.3 for more details.), and is very often used
in molecular physics [4,8,11,18]. It is also used in the analysis of algorithms for
protein structure comparison [22]. As demonstrated in [22], theoretical analyses
based on the random-walk model have high consistency with the actual experi-
mental results on the PDB database.

The organization of this paper is as follows. Section 2 describes the notations
used in this paper and previous related work as preliminaries. Section 3 describes
the problem that we solve. Section 4 describes the NP-hardness of our problem.
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Section 5 describes our new algorithm and the computational time analysis of
the algorithm. Section 6 concludes our results.

2 Preliminaries

2.1 Notations and Definitions

A chain molecule S whose i-th 3-D coordinates (vector) is si is noted as
S = (s1, s2, . . . , sn). The length n of S is denoted by |S|. A structure S[i..j] =
(si, si+1, . . . , sj) (1 ≤ i ≤ j ≤ n) is called a substructure of S. A structure
S′ = (sa1 , sa2 , . . . , sa�

) (1 ≤ a1 < a2 < . . . < a� ≤ n) is called a subsequence
structure of S. S′ is also called a k-reduced subsequence structure of S, where
k = |S| − |S′|. R · S denotes the structure S rotated by the rotation matrix
R, i.e., R · S = (Rs1, Rs2, . . . , Rsn). |v| denotes the norm of the vector v. 0
denotes the zero vector. 〈x〉 denotes the expected value of x. Prob(X ) denotes
the probability of the event X .

2.2 RMSD: Root Mean Square Deviation

The RMSD (root mean square deviation) [1,9,14,15,20,21] is the most widely-
used geometric similarity measure between two sequences of 3-D coordinates.
The RMSD between two 3-D coordinates sequences S = (s1, s2, . . . , sn) and T =

(t1, t2, . . . , tn) is defined as the minimum value of
√

1
n

∑n
i=1 |si − (R · ti + v)|2

over all the possible rotation matrices R and translation vectors v. Let
RMSD(S,T) denote the minimum value. RMSD(S,T) can be computed in
O(n) time [1,9,14,15]. Note that the RMSD can be defined in any other dimen-
sions, by considering the above vectors and matrices are in any d-dimensions.

2.3 Random-Walk Model for Chain Molecules

The random-walk model (also called the freely-jointed chain model, or just the
ideal chain model), is a very widely used simple model for analyzing behavior
of chain molecules in molecular physics [4,8,11,18]. The model is also used for
analyzing the computational time complexities of algorithms for protein struc-
tures [22]. In the model, we assume that the chain molecules can be considered
as random walks. The model ignores many physical/chemical constraints, but it
is known to reflect the behavior of real molecules very well. In fact, experiments
in [22] showed high consistency between the experimental results obtained from
the PDB database and the theoretical results deduced from the random-walk
model. Consider a chain molecule S = (s0, s2, . . . , sn) of length n + 1, in which
the distance between any two adjacent atoms is fixed to some constant r.1 In the
random-walk model, a bond between two adjacent atoms, i.e., bi = si+1 − si, is
considered as a random vector that satisfies |bi| = r, and bi is considered to be
independent from any other bond bj (j �= i).
1 In the case of proteins, the distance between two adjacent Cα atoms is fixed to 3.8Å.

We can let r = 1 by considering the distance between two adjacent atoms as the
unit of distance.
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2.4 Shibuya’s Lower Bound of the RMSD [22]

Let Uleft denote (u1, u2, . . . , u��/2�) and Uright denote
(u��/2�+1, u��/2�+2, . . . , u2·��/2�) for a structure U = (u1, u2, . . . , u�). Let G(U)
denote the centroid of the structure U, i.e., G(U) = 1

�

∑�
i=1 ui. Let F (U) denote

|G(Uleft)−G(Uright)|/2, and let D(S,T) denote
√

2 · |Sleft|/|S| · |F (S)−F (T)|
for two structures such that |S| = |T|. Shibuya proved in [22] that D(S,T) is al-
ways smaller than or equal to RMSD(S,T). In [22], he also proved the following
lemma:

Lemma 1 (Shibuya [22]). The probability Prob(D(S,T) < c) is in O(c/
√

n),
where n = |S| = |T|, under the assumption that either S or T follows the
random-walk model.

3 The k-Indel 3-D Substructure Search Problem

From now on, we deal with the following problem.

k-Indel 3-D Substructure Search Problem: We are given a text structure
P of size N and a query structure Q of size m (1 < m ≤ N), both of which
are represented by 3-D coordinates sequences of the residues. We are also given
a constant positive real c and a small constant positive integer k (k � m).
The problem is to find all the positions i (1 ≤ i ≤ N − m + k + 1) such that
the RMSD between some k′-reduced subsequence structure of Q and some k′′-
reduced subsequence structure of P[i..i− k′ + k′′ + m− 1] is at most c, for some
non-negative integers k′ and k′′ (k′ + k′′ ≤ k, k′′ − k′ ≤ N − m − i + 1).

If there exists some triple set {i, k′, k′′} that satisfies the above condition, we
say that Q matches with P[i..i − k′ + k′′ + m − 1] with threshold c and (at
most) k′ + k′′ indels. Usually, c is set to a constant proportional to the distance
between two adjacent residue coordinates in the molecular structures. In the
case of protein structures, c is often set to 1–2Å, while the distance between
two adjacent Cα atoms is 3.8Å. Usual structure databases may contain more
than 1 structures, but problems against the databases with multiple structures
can be reduced to the above single-text problem by just concatenating all the
structures into a single long text structure and ignoring matches that cross over
the boundaries of two concatenated structures.

The same problem without indels, i.e., the problem in case k = 0, is studied
very well. If we directly apply the Kabsch’s algorithm [14,15] introduced in sec-
tion 2.2, the problem without indels can be solved in O(Nm) time. For the prob-
lem, Schwartz and Sharir [20] proposed an algorithm based on the fast Fourier
transform technique that runs in O(N log m) time.2 Recently, Shibuya [22]
proposed a breakthrough average-case (expected) linear-time algorithm, assum-
ing that the text structures follow the random-walk model. He showed that his
2 The original algorithm runs in O(N log N) time. See [22] for the technique to improve

it into O(N log m).
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algorithm is much faster than other algorithms also in practice. Moreover he
showed that the experimental results on the whole PDB database agrees with
the theoretical analysis based on the random-walk model. But none of these
algorithms considers any indels.

On the other hand, there have been almost no algorithmic study for cases
k > 0, due to the difficulty of the problem, though the problem is very important.
The difficulty of the problem is not well known, though the problem is similar
to the famous contact map problem, which is known to be NP-hard [13]. In
section 4, we will show that the problem is NP-hard, in case the dimension of
the problem is arbitrary.

According to section 2.2, the RMSD between two structures of size m can be
computed in O(m) time. The possible number of subsequence structures to be
compared in the k-indel 3-D substructure search problem is less than 2m+kCk ·N ,
which is in O(Nmk). Thus, our problem can be computed in O(Nmk+1) time,
either in the worst-case analysis or in the average-case analysis. As far as we
know, it is the best-known time complexity, and there have been known no algo-
rithms other than the above straight-forward algorithm. But it also means that
the problem can be computed in polynomial time, in case the number of indels
is bounded by some constant. In section 5, we will propose the first algorithm
with better average-case time complexity, i.e., O(N), for the above problem in
case the number of the indels is at most some constant, which is a substantial
improvement for the problem. Note that the worst-case time complexity of our
algorithm is still the same as the above straight-forward algorithm. Note also
that our analysis of the average-case time complexity is based on the assumption
that the text structure follows the random-walk model,3 like the analyses in [22].

4 An NP-Hardness Result

Consider the following variant of the k-indel 3-D substructure search problem.

k-Indel Structure Comparison Problem: We are given two structures P
and Q, both of whose lengths are n. Find a k-reduced subsequence structure
P′ of P and a k-reduced subsequence structure Q′ of Q, such that the RMSD
between P′ and Q′ is at most some given threshold c.

It is trivial that the k-indel structure comparison problem is in the class NP, as
the correctness of any instance can be checked in linear time. Moreover, it is also
trivial that the k-indel 3-D substructure search problem is at least as difficult
as the k-indel comparison problem in 3-D, and the k-indel 3-D substructure
search problem is NP-hard if the k-indel structure comparison problem in 3-
D is NP-complete. The two problems can be extended to the problems in any
dimensional space. From now on, we show the k-indel structure comparison
problem in arbitrary dimension is NP-complete, by reduction from the following

3 We give this random-walk assumption only on the database structures, and we give
no assumption on the query structures.
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k-cluster problem (or the densest k-subgraph problem), whose decision problem
is known to be NP-complete [6].

k-Cluster Problem (Densest k-Subgraph Problem): Given a graph G =
(V, E), find a size k subset of V such that the number of edges induced by the
subset is the largest.

Let V = {v1, v2, . . . , vn}. Consider an arbitrary subset V ′ = {vg1 , vg2 , . . . , vgk
} of

V , where g1 < g2 < . . . < gk, and let x be the number of edges induced by V ′.
There must exist a sequence of points P = (p1, p2, . . . , pn) in n−1 dimensional

space, such that |pi − pj | = α if {vi, vj} ∈ E and |pi − pj | = β if {vi, vj} /∈ E,
where α and β are any constants that satisfy 0 < α < β < 2α. Let Q be a
sequence of n zero vectors (0, . . . ,0) in the same n − 1 dimensional space. Let
PV ′ = (pg1 , pg2 , . . . , pgk

), and QV ′ be a sequence of k zero vectors (0, . . . ,0) in
the n − 1 dimensional space.

It is well known that the translation of the two structures in 3-D is optimized
when the centroids of the two structures are placed at the same position (e.g., at
the origin of the coordinates) [1,14], in computing the RMSD. It is also true in
any dimensions d, which can be easily proved as follows. Consider two arbitrary
d-dimensional structures S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tn), and an
arbitrary d-dimensional translation vector v. Then the following equation holds:

n∑
i=1

(si−ti+v)2 = n{v+
∑n

i=1(si − ti)
n

}2+
n∑

i=1

(si−ti)2−{∑n
i=1(si − ti)}2

n
. (1)

Thus the translation is optimized when v = −
∑n

i=1(si−ti)

n . It means that the
translation is optimized when the two structures are moved so that the centroids
of the two structures are at the same position.

From now on, we consider computing the RMSD between PV ′ and QV ′ . It is
trivial that the centroid of QV ′ is at the origin of the coordinates, and moreover
QV ′ does not change its shape by any rotation, as all the vectors in QV ′ are
zero vectors. Hence, we do not have to consider the optimization of the rotation
for computing the RMSD between the two structures. Therfore we obtain the
following equation:

RMSD(PV ′ ,QV ′) = {
k∑

i=1

(pgi −
∑k

j=1 pgj

k
)2/k}1/2

= {
k−1∑
i=1

k∑
j=i+1

(pgi − pgj )
2/k}1/2

= {(α2 · x + β2 · (k(k − 1)
2

− x))/k}1/2 (2)

It means that RMSD(PV ′ ,QV ′) is smaller if x is larger, as 0 < α < β. Thus
we can obtain the answer of the decision problem of the k-cluster problem by
solving the (n − k)-indel n − 1 dimensional structure comparison problem on
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the two structures P and Q. Hence the k-indel structure comparison problem
in arbitrary dimensional space is NP-complete, and consequently we conclude
that the k-indel substructure search problem in arbitrary dimensional space is
NP-hard:

Theorem 1. The k-indel substructure search problem in arbitrary dimensional
space is NP-hard.

5 The New Linear Expected Time Algorithm

5.1 The Algorithm

To improve the performance of the algorithms for approximate matching of or-
dinary textual strings, we often divide the query into several parts to improve
the query performance [19]. For example, in case we want to search for textual
strings with k indels, we can efficiently enumerate candidates for the matches
by dividing the query into k + 1 substrings and finding the exact matches of
these substrings, as at least one of the divided substrings must exactly match
somewhere in the text. Similarly, we also divide the query 3-D structure into
several substructures in our algorithm.

In our algorithm, we first divide the query Q of size m into 3k+2 equal-length
substructures of size m′ = 	m/(3k + 2)
. Note that k is the number of maxi-
mum indels defined in section 3, which is considered to be a small constant. We
call each substructure a ‘divided substructure’. Let Qj denote the j-th divided
substructure, i.e., Q[(j − 1)m′ + 1..j · m′]. We ignore the remaining part (i.e.,
Q[(3k + 2)m′ + 1..m]) in case m is not a multiple of 3k + 2.

Consider the case that Q matches with Pi = P[i..i − k′ + k′′ + m − 1] with
threshold c and (at most) k = k′ + k′′ indels. Let Q′ and P′

i denote the k′-
reduced subsequence structure of Q and the k′′-reduced subsequence structure
of P[i..i − k′ + k′′ + m − 1] respectively, such that RMSD(Q′,P′

i) ≤ c. Let Q′
j

denote the largest substructure of Q′ such that Q′
j is a subsequence structure

of Qj . Let hj denote the first index of Q′
j in Q′, i.e., Q′

j = Q′[hj ..hj+1 − 1]
(h3k+2 = m − k′ + 1). Let P′

i,j = P′[hj ..hj+1 − 1]. It is easy to see that there
are at least 2k + 2 pairs of subsequence structures Q′

j and P′
i,j such that Q′

j =
Qj and P′

i,j is a substructure of Pi. We call these (at least 2k + 2 pairs of)
substructures ‘ungapped substructures’. Notice that the length of the ungapped
substructures is m′. Let the index of an ungapped structure P′

i,j in Pi be pj, i.e.,
P′

i,j = Pi[pj ..pj + m′ − 1]. It is easy to see that |(j − 1) ·m′ + 1− pj | ≤ k, as we
allow only at most k indels. Then, an inequality RMSD(Q′

j,P
′
i,j) ≤ c ·√m/m′

holds for ungapped substructures Q′
j and P′

i,j , according to the following lemma:

Lemma 2. Consider a pair of two structures S = (s1, s2, . . . , sn) and T =
(t1, t2, . . . , tn), both of whose length is n. Let S′ = (sa1 , sa2 , . . . , san′ ) be
some subsequence structure of S, and let T′ = (ta1 , ta2 , . . . , tan′ ). Then,
RMSD(S′,T′) ≤ √

n/n′ · RMSD(S,T).
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Proof. According to the definition of the RMSD, the following inequality holds:

RMSD(S′,T′) = min
R,v

√√√√ 1
n′

n′∑
i=1

|sai − (R · tai + v)|2

≤ min
R,v

√√√√ 1
n′

n∑
i=1

|si − (R · ti + v)|2

=
√

n/n′ · RMSD(S,T). (3)

�

In summary, at least 2k + 2 divided substructures Qj = Q[(j − 1)m′ + 1..j ·m′]
(among the 3k + 2 divided substructures) must satisfy the following constraint:

– There must be some substructure P[�..� + m′ − 1] of P such that
RMSD(Q′

j,P[�..� + m′ − 1]) ≤ c · √
m/m′ and i + (j − 1)m′ − k ≤ � ≤

i + (j − 1)m′ + k.

These 2k + 2 (or more) divided substructures must also satisfy the following
weaker constraint, as an inequality D(S,T) ≤ RMSD(S,T) holds for any pair
of same-length structures S and T (see section 2.4 for the definition of D(S,T)).

– There must be some substructure P[�..� + m′ − 1] of P such that
D(Q′

j ,P[�..�+m′−1]) ≤ c·√m/m′ and i+(j−1)m′−k ≤ � ≤ i+(j−1)m′+k.

We call the divided substructures that satisfy the latter weaker constraint ‘hit
substructures’ for the position i.

Based on the above discussions, we propose the following simple algorithm
for the k-indel 3-D substructure problem.

Algorithm

1. We first enumerate all the positions i in P such that there are at least 2k+2
hit substructures for the position i, by computing all the D(Qj ,P[i..i+m′−
1]) values for all the pairs of i (1 ≤ i ≤ N − m′ + 1) and j (1 ≤ j ≤ 3k + 2).

2. For each position i found in step 1, we check the RMSDs between all the
pairs of k′-reduced subsequence structure of Q and k′′-reduced subsequence
substructure of P[i..i + m − k′ + k′′ + m − 1] such that k′ + k′′ ≤ k and
k′′−k′ ≤ N −m− i+1. If any one of the checked RMSDs is smaller or equal
to c, output i as the position of a substructure similar to the query Q.

In the next section, we analyze the average-case time complexity of the
algorithm.

5.2 The Average-Case Time Complexity of the Algorithm

For each Qj (whether it is a hit substructure or not), we can compute
D(Qj ,P[i..i + m′ − 1]) for all i (1 ≤ i ≤ N − m′ + 1) in total O(N) time,
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as G(P[i..i + m′ − 1]) (i.e., the centroid of P[i..i + m′ − 1]) can be computed
in O(N) time for all i. Thus, we can execute the step 1 of the algorithm in
section 5.1 in O(k2 ·N) time, which is in O(N) as we consider k is a small fixed
constant. Let N ′ denote the number of candidates enumerated in step 1 of the
algorithm in section 5.1. As the number of pairs to check in step 2 for each posi-
tion is less than 2m+kCk (which is in O(mk)), and each RMSD can be computed
in O(m) time, the computational complexity of step 2 is O(N ′mk+1). In total,
the computational complexity of the algorithm is O(N + N ′mk+1). In the worst
case, the algorithm could be as bad as the naive O(Nmk+1)-time algorithm, as
N ′ could be N at worst.

But, in the following, we show that 〈N ′〉 is only in O(N/mk+1) and conse-
quently the average-case (expected) time complexity of the algorithm is aston-
ishingly O(N), under the assumption that P follows the random-walk model.
According to Lemma 1 in section 2.4, the probability that a divided substruc-
ture Qi is a hit substructure for the position i is in O(k · c · √

m/m′/
√

m′) =
O(c · k2/

√
m), under the random-walk assumption. Consider that the above

probability can be bounded by a · c · k2/
√

m if m is large enough, where a is an
appropriate constant. Then, the probability that 2k + 2 of the 3k + 2 divided
substructures are hit substructures is O((a · c · k2/

√
m)2k+2 · 3k+2C2k+2), which

is in O(c2k+2 · k5k+4/mk+1). Thus 〈N ′〉 is in O(N · c2k+2 · k5k+4/mk+1), and the
following lemma holds, considering that both c and k are small fixed constants.

Lemma 3. 〈N ′〉 is in O(N/mk+1).

Consequently the expected time complexity of the step 2 of the above algorithm
is only in O(N). (More precisely, it is O(c2k+2 · k5k+4 ·N), but we consider that
both c and k are small fixed constants.) In conclusion, the total expected time
complexity of the algorithm in section 5.1 is only O(N), under the assumption
that P follows the random walk model:4

Theorem 2. The total expected time complexity of our algorithm is O(N), un-
der the assumption that P follows the random walk model.

6 Concluding Remarks

We considered the k-indel 3-D substructure search problem, in which we search
for similar 3-D substructures from molecular 3-D structure databases, with con-
sideration of indels. We showed that the same problem in arbitrary dimensional
space is NP-hard. Moreover, we proposed a linear expected time algorithm, un-
der the assumption that the number of indels is bounded by a constant and
the database structures follow the random-walk model. There are several open
problems. First of all, the difficulty of our problem restricted to 3-D space is
not known. As for our algorithm, its expected time complexity is O(N) for a
database of size N , but its coefficient, i.e., c2k+2 · k5k+4, is very large (c is the
4 The same discussion can be done if the query Q follows the random walk model,

instead of P.
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threshold of the RMSD and k is the maximum number of indels, both of which
we consider as constant numbers). It would be more practical if we can design
algorithms with better coefficients. Another open problem is whether we can
design a worst-case (deterministically) linear-time algorithm for our problem,
though no worst-case linear-time algorithm is known even for the no-indel case.
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