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is at most M. The circuit clusteringproblem is to compute

a feasible clustering � ofG such that the delay of� is min-

imum among all feasible clusterings of G .

An early work of Lawler et al. [ 2 ] presented a polynomial-

time optimal algorithm for the circuit clustering problem

in the special case where all the gate delays are zero ( i. e . ,

ı (v ) = 0 for all v) .

Key Resu l ts

Rajaraman and Wong [ 5 ] presented an optimal polyno-

mial- time algorithm for the circuit clustering problem un-

der the general delay model.

Theorem 1 There exists an algorithm that computes an

optimal clustering for the circuit clustering problem in

O ( n 2 log n + nm ) time, where n and m are the vertices and

edges, respectively, ofthe given combinational network.

This result can be extended to compute optimal cluster-

ings under any monotone clustering constraint. A clus-

tering constraint is monotone if any connected subset of

nodes in a feasible cluster is also monotone [ 2] .

Theorem 2 The circuit clustering problem can be solved

optimallyunder anymonotone clusteringconstraint in time

polynomial in the size ofthe circuit.

Appl i cati ons

Circuit partitioning/clustering is an important component

of very large scale integration design. One application of

the circuit clustering problem formulated above is to im-

plement a circuit on multiple field programmable gate ar-

ray chips . The work of Rajaraman and Wong focused on

clustering combinational circuits to minimize delay under

area constraints . Related studies have considered other im-

portant constraints , such as pin constraints [ 1 ] and a com-

bination of area and pin constraints [ 6] . Further work has

also included clustering sequential circuits ( as opposed to

combinational circuits) with the objective of minimizing

the clock period [ 4] .

Experimental Resu l ts

Rajaraman and Wong reported experimental results on

five ISCAS ( International Symposium on Circuits and

Systems) circuits . The number of nodes in these circuits

ranged from 1 96 to 91 3 . They reported the maximum de-

lay of the clusterings and running times of their algorithm

on a Sun Sparc workstation.

Cross References

� FPGA Technology Mapping
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Probl em Defi n i ti on

Let n be a positive integer. A distance matrix of or-

der n ( also called a dissimilarity matrix of order n ) is

a matrix D of size ( n � n ) which satisfies : ( 1 ) Di ; j > 0

for all i ; j 2 f 1 ; 2 ; : : : ; n g with i ¤ j; ( 2) Di ; j = 0 for all

i ; j 2 f 1 ; 2 ; : : : ; n g with i = j; and ( 3 ) Di ; j = Dj; i for all

i ; j 2 f 1 ; 2 ; : : : ; n g .

Below, all trees are assumed to be unrooted and

edge-weighted. For any tree T , the distance between two

nodes u and v in T is defined as the sum of the weights

of all edges on the unique path in T between u and v,

and is denoted by dT
u ; v . A tree T is said to realize a given

distance matrix D of order n if and only if it holds that

f 1 ; 2 ; : : : ; n g is a subset of the nodes of T and dT
i ; j = Di ; j

for all i ; j 2 f 1 ; 2 ; : : : ; n g . F inally, a distance matrix D is
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called additive or tree-realizable if and only if there exists

a tree which realizes D.

Problem 1 (The Phylogenetic Tree from Distance Ma-

trix Problem)

INP UT : An distance matrix D oforder n .

O UT P UT : A tree which realizes D and has the smallest pos-

sible number ofnodes, ifD is additive; otherwise, null.

See Fig. 1 for an example.

In the time complexities listed below, the time needed

to input all ofD is not included. Instead, O ( 1 ) is charged to

the running time whenever an algorithm requests to know

the value of any specified entry of D.

Key Resu l ts

Several authors have independently shown how to solve

The Phylogenetic Tree from Distance Matrix Problem.

The fastest of these algorithms run in O (n 2 ) time1 :

Theorem 1 ( [ 2,4,5,7,1 5] ) There exists an algorithm which

solves The Phylogenetic Tree from Distance Matrix Problem

in O(n2) time.

Although the algorithms are different, it can be proved

that:

Theorem 2 ( [ 8,1 5] ) For anygiven distance matrix, the so-

lution to The Phylogenetic Tree from Distance Matrix Prob-

lem is un ique.

Furthermore, the algorithms referred to in Theorem 1

have optimal running time since any algorithm for The

Phylogenetic Tree from Distance Matrix Problem must in

the worst case query all ˝ (n 2 ) entries of D to make sure

that D is additive. However, if it is known in advance that

the input distance matrix is additive then the time com-

plexity improves, as shown by Hein [ 9 ] :

Theorem 3 ( [ 9,1 2] ) There exists an algorithm which

solves The Phylogenetic Tree from Distance Matrix Prob-

lem restricted to additive distance matrices in O ( kn logk n )

time, where k is the maximum degree ofthe tree that real-

izes the input distance matrix2.

The algorithm of Hein [ 9 ] starts with a tree containing just

two nodes and then successively inserts each node i into

the tree by repeatedly choosing a pair of existing nodes and

computing where on the path between them that i should

1 See [ 5 ] for a short survey of older algorithms which do not run

in O (n2 ) time.
2 For this case, the Culberson- Rudnicki algorithm [ 5 ] runs in

O (n 3 /2
p

k) time for trees in which all edge weights are equal to 1 ,

and not in O ( kn logk n ) time as claimed in [ 5 ] . See [ 1 2] for a coun-

terexample to [ 5 ] and a correct analysis .

be attached, until i ’ s position has been determined. (The

same basic technique is used in the O (n 2 ) - time algorithm

of Waterman et al. [ 1 5 ] referenced to by Theorem 1 above,

but the algorithm of Hein selects paths which are more

efficient at discriminating between the possible positions

for i . )

The lower bound corresponding to Theorem 3 is given

by:

Theorem 4 ( [ 1 0] ) The Phylogenetic Tree from Distance

Matrix Problem restricted to additive distance matrices re-

quires˝ ( kn logk n ) queries to the distance matrix D, where

k is the maximum degree ofthe tree that realizes D, even if

restricted to trees in which all edge weights are equal to 1 .

Finally, note that the following special case is easily solv-

able in linear time:

Theorem 5 ( [ 5] ) There exists an O(n)-time algorithm

which solves The Phylogenetic Tree from Distance Matrix

Problem restricted to additive distance matrices for which

the realizing tree contains two leaves on ly and has all edge

weights equal to 1 .

Appl i cati ons

The main application of The Phylogenetic Tree from Dis-

tance Matrix Problem is in the construction of a tree ( a so-

called phylogenetic tree) that represents evolutionary re-

lationships among a set of studied objects ( e . g. , species

or other taxa, populations, proteins , genes, etc. ) . Here, it

is assumed that the objects are indeed related according

to a tree- like branching pattern caused by an evolution-

ary process and that their true pairwise evolutionary dis-

tances are proportional to the measured pairwise dissimi-

larities . See, e . g. , [ 1 ,6 ,7 , 1 4, 1 5 ] for examples and many ref-

erences as well as discussions on how to estimate pair-

wise dissimilarities based on biological data. Other appli-

cations of The Phylogenetic Tree from Distance Matrix

Problem can be found in psychology, for example to de-

scribe semantic memory organization [ 1 ] , in comparative

linguistics to infer the evolutionary history of a set of lan-

guages [ 1 1 ] , or in the study of the filiation of manuscripts

to trace how manuscript copies of a text (whose original

version may have been lost) have evolved in order to iden-

tify discrepancies among them or to reconstruct the origi-

nal text [ 1 ,3 , 1 3 ] .

In general, real data seldom forms additive distance

matrices [ 1 5 ] . Therefore, in practice, researchers consider

optimization versions of The Phylogenetic Tree from Dis-

tance Matrix Problem which look for a tree that “almost”

realizes D. Many alternative definitions of “almost” have

been proposed, and numerous heuristics and approxima-
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a An add i ti ve d i stan ce matr i x D of order 5 . b A tree T wh i ch rea l i zes D. H ere, f 1 ; 2 ; : : : ; 5 g forms a subset of th e nodes ofT

tion algorithms have been developed. A comprehensive

description of some of the most popular distance-based

methods for phylogenetic reconstruction as well as more

background information can be found in, e . g. , Chapt. 1 1

of [ 6] or Chapt. 4 of [ 1 4] . See also [ 1 ] and [ 1 6] and the

references therein.

Cross References

� Distance-Based Phylogeny Reconstruction

(Fast-Converging)

� Distance-Based Phylogeny Reconstruction (Optimal

Radius)
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