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Perceptron Al gor i thm , Tab l e 1
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small, then f(x) is likely to perform well on unseen exam-

ples as well.

Finally, it should be noted that the Perceptron algo-

rithm was used for other purposes such as solving lin-

ear programming [ 3 ] and training support vector ma-

chines [ 1 4] . In addition, variants of the Perceptron was

used for numerous additional problems such as online

learning on a budget [ 8 , 4] , multiclass categorization and

ranking problems [ 6, 7 ] , and discriminative training for

hidden Markov models [ 5 ] .
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states ; Convex tree- realization of partitions containing

a bounded number of sets

Probl em Defi n i ti on

Let S = f s1 ; s2 ; : : : ; sn g be a set of elements called objects

and species, and let C = f c1 ; c2 ; : : : ; cm g be a set of func-

tions called characters such that each c j 2 C is a function

from S to the set f0 ; 1 ; : : : ; r j � 1 g for some integer rj. For

every c j 2 C , the set f0 ; 1 ; : : : ; r j � 1 g is called the set ofal-

lowed states of character cj, and for any s i 2 S and c j 2 C ,

it is said that the state ofsi on cj is ˛ , or that the state ofcj

for si is ˛ , where ˛ = c j( s i ) . The character state matrix for S

and C is the ( n � m ) - matrix in which entry ( i , j) for any
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i 2 f 1 ; 2 ; : : : ; n g and j 2 f 1 ; 2 ; : : : ; m g equals the state of si
on cj.

In this chapter, a phylogeny for S is an unrooted

tree whose leaves are bijectively labeled by S . For every

c j 2 C and ˛ 2 f0 ; 1 ; : : : ; r j � 1 g , define the set Sc j; ˛ by

Sc j; ˛ = f s i 2 S : the state of s i on c j is ˛ g . A perfect phy-

logeny for (S , C) ( if one exists) is a phylogeny T for S such

that the following holds : for each c j 2 C and pair of al-

lowed states ˛ , ˇ of cj with ˛ ¤ ˇ , the minimal subtree

of T that connects Sc j; ˛ and the minimal subtree of T that

connects Sc j; ˇ are vertex- disjoint. See Fig. 1 for an exam-

ple . The Perfect PhylogenyProblem is the following:

Problem 1 (The Perfect Phylogeny Problem)

I N P U T : A character state matrix M for some S and C.

O U T P U T : A perfect phylogenyfor (S, C), ifone exists; other-

wise, null.

Below, define r = maxj2 f 1 ; 2 ; : : : ; m g r j.

Key Resu l ts

The following negative result was proved by Bodlaen-

der, Fellows, and Warnow [ 2] and, independently, by

Steel [ 1 3 ] :

Theorem 1 ( [ 2,1 3] ) The Perfect PhylogenyProblem is NP-

hard.

O n the other hand, certain restrictions of The Perfect

Phylogeny Problem can be solved efficiently. O ne impor-

tant special case occurs if the number of allowed states

of each character is limited1 . For this case, Agarwala and

Fernández- Baca [ 1 ] designed a dynamic programming-

based algorithm that builds perfect phylogenies on cer-

tain subsets of S called c-clusters ( also referred to as

proper clusters in [ 5 , 1 0] and character subfamilies in [ 6] )

in a bottom- up fashion. Each c- cluster G has the property

that: ( 1 ) G and S n G share at most one state of each char-

acter; and ( 2) for at least one character, G and S n G share

no states . The number of c- clusters is at most 2rm , and

the algorithm’ s total running time is O ( 2 3 r ( nm 3 + m 4 ) ) ,

i. e . , exponential in r . ( Hence, The Perfect Phylogeny

Problem is polynomial- time solvable if the number of

allowed states of every character is upper- bounded by

O ( log( m + n ) ) . ) Subsequently, Kannan and Warnow [ 1 0]

presented a modified algorithm with improved running

time. They restructured the algorithm of [ 1 ] to eliminate

one of the three nested loops that steps through all possible

1 For other variants of The Perfect Phylogeny Problem which can

be solved efficiently, see, for example, entries � Directed Perfect Phy-

logeny ( Binary Characters) of this Encyclopedia or the survey by

Fernández- Baca [ 5 ] .

Perfect Phyl ogeny (Bounded N umber of States) , Tab l e 1

The runn i n g times of th e fastest known a l gor i thms for The Per-

fect Phyl ogeny Prob l em wi th a bounded number of states

r Ru n n i n g tim e Referen ce

2 O(nm ) [ 1 1 ] togeth er wi th [ 7 ]

3 m i n fO(nm2 ) ; O(n2m )g [ 3 ,1 0] togeth er wi th [9]

4 m i n fO(nm2 ) ; O(n2m )g [ 1 0] togeth er wi th [9]

� 5 O(2 2 rnm2 ) [ 1 0]

c- clusters and added a pre- processing step which speeds

up the innermost loop. The resulting time complexity is

given by:

Theorem 2 ( [ 1 0] ) The algorithm ofKannan and Warnow

in [1 0] solves The Perfect PhylogenyProblem in O ( 2 2r nm 2 )

time.

A perfect phylogeny T for (S , C) is called minimal if no

tree which results by contracting an edge of T is a per-

fect phylogeny for (S , C) . In [ 1 0] , Kannan and Warnow

also showed how to extend their algorithm to enumerate

all minimal perfect phylogenies for (S , C) by constructing

a directed acyclic graph that implicitly stores the set of all

perfect phylogenies for (S , C) .

Theorem 3 ( [ 1 0] ) The extended algorithm ofKannan and

Warnow in [1 0] enumerates the set ofall min imal perfect

phylogen ies for (S, C) so that the maximum computation

time between two consecutive outputs is O ( 2 2r nm 2 ) .

For very small values of r , even faster algorithms are

known. Refer to the table in Table 1 for a summary. If

r = 2 then the problem can be solved in O ( nm ) time by

reducing it to The Directed Perfect Phylogeny Problem for

Binary Characters ( see, e . g. , Encyclopedia � Directed Per-

fect Phylogeny ( Binary Characters) for a definition of this

variant of the problem) using O ( nm ) time [ 7 , 1 1 ] and then

applying Gusfield’ s O ( nm ) - time algorithm [ 7] . If r = 3 or

r = 4, the problem is solvable in O ( n 2 m ) time by another

algorithm by Kannan and Warnow [ 9] , which is faster

than the algorithm from Theorem 2 when n < m . Also

note that for the case r = 3 , there exists an older algorithm

by Dress and Steel [ 3 ] whose running time coincides with

that of the algorithm in Theorem 2.

Appl i cati ons

A central goal in computational evolutionary biology and

phylogenetic reconstruction is to develop efficient meth-

ods for constructing, from some given data, a phyloge-

netic tree that accurately describes the evolutionary rela-

tionships among a set of objects ( e . g. , biological species or
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M c1 c2 c3

s 1 0 0 1
s 2 1 1 0
s 3 2 2 0
s4 1 0 0
s 5 0 3 1
s 6 1 0 1

( a) ( b)

Perfect Phyl ogeny (Bounded N umber of States) , F i gu re 1

a An examp l e of a ch aracter state matr i x M for S = f s1 ; s2 ; : : : ; s6 g and C = f c1 ; c2 ; c3 g wi th r1 = 3 , r2 = 4, and r3 = 2 , i . e. , r = 4.

b A perfect phyl ogeny for (S, C) . F or conven i en ce, th e states of a l l th ree ch aracters for each object are shown

other taxa, populations , proteins , genes , natural languages ,

etc. ) believed to have been produced by an evolutionary

process . O ne of the most widely used techniques for re-

constructing a phylogenetic tree is to represent the objects

as vectors of character states and look for a tree that clus-

ters objects which have a lot in common. The Perfect Phy-

logeny Problem can be regarded as the ideal special case of

this approach in which the given data contains no errors,

evolution is tree- like, and each character state can emerge

only once in the evolutionary history.

However, data obtained experimentally seldom admits

a perfect phylogeny, so various optimization versions of

the problem such as maximum parsimony and maximum

compatibility are often considered in practice; as might be

expected, these strategies generally lead to NP- complete

problems, but there exist many heuristics that work well

for most inputs . See, e . g. [ 4, 5 , 1 2 ] , for a further discussion

and references . Nevertheless , algorithms for The Perfect

Phylogeny Problem may be useful even when the data does

not admit a perfect phylogeny, for example if there exists

a perfect phylogeny for m � O ( 1 ) of the characters in C . In

fact, in one crucial step of their proposed character- based

methodology for determining the evolutionary history of

a set of related natural languages , Warnow, Ringe, and

Taylor [ 1 4] consider all subsets of C in decreasing order of

cardinality, repeatedly applying the algorithm of [ 1 0] un-

til a largest subset of C which admits a perfect phylogeny

is found. The ideas behind the algorithms of [ 1 ] and [ 1 0]

have also been utilized and extended by Fernández- Baca

and Lagergren [ 6] in their algorithm for computing near-

perfect phylogen ies in which the constraints on the output

have been relaxed in order to permit non- perfect phyloge-

nies whose so- called penalty score is less than or equal to

a prespecified parameter q ( see [ 6] for details) .

The motivation for considering a bounded number of

states is that characters based on directly observable traits

are, by the way they are defined, naturally bounded by

some small number ( often 2) . When biomolecular data is

used to define characters , the number of allowed states is

typically bounded by a constant; e . g. , r = 2 for SNP mark-

ers , r = 4 for DNA or RNA sequences , or r = 20 for amino-

acid sequences ( see also Encyclopedia � Directed Per-

fect Phylogeny ( Binary Characters) ) . Moreover, characters

with r = 2 can be useful in comparative linguistics [ 8 ] .

Open Probl ems

An important open problem is to determine whether

the running time of the algorithm of Kannan and

Warnow [ 1 0] can be improved. As pointed out in [ 5 ] , it

would be especially interesting to find out if The Perfect

Phylogeny Problem is solvable in O ( 2 2r nm ) time for any r ,

or more generally, in O ( f( r) � nm ) time, where f is a func-

tion of r which does not depend on n or m , s ince this

would match the fastest known algorithm for the special

case r = 2 ( see Table 1 ) . Another open problem is to es-

tablish lower bounds on the computational complexity of

The Perfect Phylogeny Problem with a bounded number

of states .

Cross References

� Directed Perfect Phylogeny ( Binary Characters)

� Perfect Phylogeny Haplotyping
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Probl em Defi n i ti on

In the context of the perfect phylogeny haplotyping ( PPH)

problem, each vector h 2 f0 ; 1 gm is called a haplotype ,

while each vector g 2 f0 ; 1 ; 2gm is called a genotype . Hap-

lotypes are binary encodings of DNA sequences, while

genotypes are ternary encodings of pairs of DNA se-

quences ( one sequence for each of the two homologous

copies of a certain chromosome) .

Two haplotypes h 0 and h 00 are said to resolve a geno-

type g if, at each position j: ( i) if gj 2 f0 ; 1 g then both

h 0j = gj and h 00j = gj; ( ii) if gj = 2 then either h 0j = 0 and

h 00j = 1 or h 0j = 1 and h 00j = 0. If h 0 and h 00 resolve g, we

write g = h 0 + h 00 . An instance of the PPH problem con-

sists of a set G = f g1 ; g2 ; : : : ; gn g of genotypes . A set H of

haplotypes such that, for each g 2 G , there are h 0 ; h 00 2 H

with g = h 0 + h 00 , is called a resolvingset for G .

A perfect phylogeny for a set H of haplotypes is a rooted

tree T for which

� the set of leaves is H and the root is labeled by some

binary vector r ;

� each index j 2 f 1 ; : : : ; m g labels exactly one edge of T ;

� if an edge e is labeled by an index k, then, for each leaf h

that can be reached from the root via a path through e ,

it is h k ¤ rk .

Without loss of generality, it can be assumed that the

vector labeling the root is r = 0. Within the PPH problem,

T is meant to represent the evolution of the sequences at

the leaves from a common ancestral sequence ( the root) .

Each edge labeled with an index represents a point in time

when a mutation happened at a specific site . This model

of evolution is also known as coalescent [ 1 1 ] . It can be

shown that a perfect phylogeny for H exists if and only if

for all choices of four haplotypes h 1 ; : : : ; h4 2 H and two

indices i ; j,

f h a
i h a

j ; 1 � a � 4g 6= f00 ; 01 ; 1 0 ; 1 1 g :

Given the above definitions, the problem surveyed in

this entry is the following:

Perfect Phylogeny Haplotyping Problem (PPH) :

Given a set G of genotypes, find a resolving set H of hap-

lotypes and a perfect phylogeny T for H, or determine that

such a resolving set does not exist.

In a slightly different version of the above problem, one

may require to find all perfect phylogenies for H instead of

just one ( in fact, all known algorithms for PPH do find all

perfect phylogenies) .

The perfect phylogeny problem was introduced by

Gusfield [ 7] , who also proposed a nearly linear- time

O ( nm ˛ ( nm ) ) - algorithm for its solution ( where ˛ ( ) is the

extremely slowly growing inverse Ackerman function) .


