644

Perfect Phylogeny (Bounded Number of States)

Perceptron Algorithm, Table 1

Online Perceptron Kernel-based Online Perceptron

INITIALIZATION: Wy =0

INITIALIZATION: Iy = {-}

Fort=1,2,...

Fort=1,2,...

Receive an instance x;

Receive an instance x;

Predict an outcome y; = sign({w¢, X))

Predict an outcome y; = sign (E,e,r K(xj, xr))

Receive correct outcome y; € {+1,—1}

Receive correct outcome y; € {+1,—1}
Wt + YeXe

if y
Update: weyq = Vo # vt
w; otherwise

ULty 9 # e

I otherwise

Update: lr41 =

small, then f(x) is likely to perform well on unseen exam-
ples as well.

Finally, it should be noted that the Perceptron algo-
rithm was used for other purposes such as solving lin-
ear programming [3] and training support vector ma-
chines [14]. In addition, variants of the Perceptron was
used for numerous additional problems such as online
learning on a budget [8,4], multiclass categorization and
ranking problems [6,7], and discriminative training for
hidden Markov models [5].

Cross References

» Support Vector Machines

Recommended Reading

1. Agmon., S.: The relaxation method for linear inequalities. Can.
J. Math. 6(3), 382-392 (1954)

2. Block., H. D.: The perceptron: A model for brain functioning.
Rev. Mod. Phys. 34, 123-135 (1962)

3. Blum, A,, Dunagan J. D.: Smoothed analysis of the perceptron
algorithm for linear programming. In: SODA, (2002)

4. Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with
a simple budget perceptron. In: Proceedings of the Nineteenth
Annual Conference on Computational Learning Theory, (2006)

5. Collins, M.: Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms.
In: Conference on Empirical Methods in Natural Language Pro-
cessing, (2002)

6. Crammer, K, Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer,
Y.: Online passive aggressive algorithms. J. Mach. Learn. Res.
7 (2006)

7. Crammer, K., Singer, Y.: A new family of online algorithms for
category ranking. In: Proceedings of the 25th Annual Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval (2002)

8. Dekel, O. Shalev-Shwartz, S., Singer, Y.: The Forgetron:
A kernel-based perceptron on a fixed budget. In: Advances in
Neural Information Processing Systems 18 (2005)

9. Freund, Y., Schapire, R. E.: Large margin classification using the
perceptron algorithm. In: Proceedings of the Eleventh Annual
Conference on Computational Learning Theory (1998)

10. Gentile, C.: The robustness of the p-norm algorithms. Mach.
Learn. 53(3) (2002)

11. Minsky, M., Papert, S.: Perceptrons: An Introduction to Compu-
tational Geometry. The MIT Press, (1969)

12. Novikoff, A. B. J.: On convergence proofs on perceptrons. In:
Proceedings of the Symposium on the Mathematical Theory
of Automata, volume XII, pp. 615-622, (1962)

13. Rosenblatt, F.: The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychol. Rev. 65,
386-407 (1958)

14. Shalev-Shwartz, S., Singer, Y.: A new perspective on an old per-
ceptron algorithm. In: Proceedings of the Eighteenth Annual
Conference on Computational Learning Theory, (2005)

15. Vapnik, V. N.: Statistical Learning Theory. Wiley (1998)

|
Perfect Phylogeny
(Bounded Number of States)

1997; Kannan, Warnow

JESPER JANSSON
Ochanomizu University, Tokyo, Japan

Keywords and Synonyms

Compatibility of characters with a bounded number of
states; Convex tree-realization of partitions containing
a bounded number of sets

Problem Definition

Let S = {s1,52,...,5,} be a set of elements called objects
and species, and let C = {c;, c2, ..., ¢y} be a set of func-
tions called characters such that each ¢; € C is a function
from S to the set {0, 1,. .., r; — 1} for some integer r;. For
everycj € C,theset{0, 1,...,r; — 1} is called the set of al-
lowed states of character cj, and for any s; € Sand ¢; € C,
it is said that the state of s; on ¢; is o, or that the state of ¢
fors;isa, wherea = c;(s;). The character state matrix for S
and C is the (n x m)-matrix in which entry (i,j) for any

Perfect Phylogeny (Bounded Number of States)

645

ie€{l,2,...,n}andj € {1,2,..., m}equals the state of s;
on ;.

In this chapter, a phylogeny for S is an unrooted
tree whose leaves are bijectively labeled by S. For every
ci€Cand o € {0,1,...,r; — 1}, define the set Scj,a by
Scja = {si € S : thestate of s; on cjisa}. A perfect phy-
logeny for (S, C) (if one exists) is a phylogeny T for S such
that the following holds: for each ¢; € C and pair of al-
lowed states «, B of ¢; with o # B, the minimal subtree
of T that connects S, o and the minimal subtree of T that
connects S g are vertex-disjoint. See Fig. 1 for an exam-
ple. The Perfect Phylogeny Problem is the following:

Problem 1 (The Perfect Phylogeny Problem)

INPUT: A character state matrix M for some S and C.
OUTPUT: A perfect phylogeny for (S, C), if one exists; other-
wise, null.

Below, define r = maXje(1,,...,m} 7j-

Key Results

The following negative result was proved by Bodlaen-
der, Fellows, and Warnow [2] and, independently, by
Steel [13]:

Theorem 1([2,13]) The Perfect Phylogeny Problem is NP-
hard.

On the other hand, certain restrictions of The Perfect
Phylogeny Problem can be solved efficiently. One impor-
tant special case occurs if the number of allowed states
of each character is limited!. For this case, Agarwala and
Ferndndez-Baca [1] designed a dynamic programming-
based algorithm that builds perfect phylogenies on cer-
tain subsets of S called c-clusters (also referred to as
proper clusters in [5,10] and character subfamilies in [6])
in a bottom-up fashion. Each c-cluster G has the property
that: (1) Gand S \ G share at most one state of each char-
acter; and (2) for at least one character, G and S \ G share
no states. The number of c-clusters is at most 2"m, and
the algorithm’s total running time is 023 (nm? + m*)),
i.e., exponential in r. (Hence, The Perfect Phylogeny
Problem is polynomial-time solvable if the number of
allowed states of every character is upper-bounded by
O(log(m + n)).) Subsequently, Kannan and Warnow [10]
presented a modified algorithm with improved running
time. They restructured the algorithm of [1] to eliminate
one of the three nested loops that steps through all possible

!For other variants of The Perfect Phylogeny Problem which can
be solved efficiently, see, for example, entries » Directed Perfect Phy-
logeny (Binary Characters) of this Encyclopedia or the survey by
Fernandez-Baca [5] .

Perfect Phylogeny (Bounded Number of States), Table 1
The running times of the fastest known algorithms for The Per-
fect Phylogeny Problem with a bounded number of states

Running time Reference

|

2 O(nm) [11] together with [7]
3 | min{O(nm?), O(n?m)} | [3,10] together with [9]
4 [min{O(nm?), O(n?m)} | [10] together with [9]
> 5| 0(2% nm?) [10]

c-clusters and added a pre-processing step which speeds
up the innermost loop. The resulting time complexity is
given by:

Theorem 2 ([10]) The algorithm of Kannan and Warnow
in [10] solves The Perfect Phylogeny Problem in O(2*" nm?)
time.

A perfect phylogeny T for (S, C) is called minimal if no
tree which results by contracting an edge of T is a per-
fect phylogeny for (S, C). In [10], Kannan and Warnow
also showed how to extend their algorithm to enumerate
all minimal perfect phylogenies for (S, C) by constructing
a directed acyclic graph that implicitly stores the set of all
perfect phylogenies for (S, C).

Theorem 3 ([10]) The extended algorithm of Kannan and
Warnow in [10] enumerates the set of all minimal perfect
phylogenies for (S, C) so that the maximum computation
time between two consecutive outputs is 02 nm?).

For very small values of r, even faster algorithms are
known. Refer to the table in Table 1 for a summary. If
r =2 then the problem can be solved in O(nm) time by
reducing it to The Directed Perfect Phylogeny Problem for
Binary Characters (see, e. g., Encyclopedia » Directed Per-
fect Phylogeny (Binary Characters) for a definition of this
variant of the problem) using O(nm) time [7,11] and then
applying Gusfield’s O(nm)-time algorithm [7]. If = 3 or
r = 4, the problem is solvable in O(#?m) time by another
algorithm by Kannan and Warnow [9], which is faster
than the algorithm from Theorem 2 when n < m. Also
note that for the case r = 3, there exists an older algorithm
by Dress and Steel [3] whose running time coincides with
that of the algorithm in Theorem 2.

Applications

A central goal in computational evolutionary biology and
phylogenetic reconstruction is to develop efficient meth-
ods for constructing, from some given data, a phyloge-
netic tree that accurately describes the evolutionary rela-
tionships among a set of objects (e. g., biological species or

Perfect Phylogeny (Bounded Number of States)

S

6
[1,0,1]
5
; [1.1.0]
[0,0,1]
M C1 C2 C3
S1 0 0 1 S4
S9 1 1 0 [1,0,0]
S3 2 2 0
s 1
4 0 O 5 i
S5 0 3 1 0.3.1 3
se |1 0 1 [0,3,1] [2,2,0]
(a) (b)
Perfect Phylogeny (Bounded Number of States), Figure 1
a An example of a character state matrix M for S = {s1,52,...,56} and C = {c1,¢2,¢c3} withr; =3, r, =4, and r; =2, i.e, r=4.

b A perfect phylogeny for (S, C). For convenience, the states of all three characters for each object are shown

other taxa, populations, proteins, genes, natural languages,
etc.) believed to have been produced by an evolutionary
process. One of the most widely used techniques for re-
constructing a phylogenetic tree is to represent the objects
as vectors of character states and look for a tree that clus-
ters objects which have a lot in common. The Perfect Phy-
logeny Problem can be regarded as the ideal special case of
this approach in which the given data contains no errors,
evolution is tree-like, and each character state can emerge
only once in the evolutionary history.

However, data obtained experimentally seldom admits
a perfect phylogeny, so various optimization versions of
the problem such as maximum parsimony and maximum
compatibility are often considered in practice; as might be
expected, these strategies generally lead to NP-complete
problems, but there exist many heuristics that work well
for most inputs. See, e. g. [4,5,12], for a further discussion
and references. Nevertheless, algorithms for The Perfect
Phylogeny Problem may be useful even when the data does
not admit a perfect phylogeny, for example if there exists
a perfect phylogeny for m — O(1) of the characters in C. In
fact, in one crucial step of their proposed character-based
methodology for determining the evolutionary history of
a set of related natural languages, Warnow, Ringe, and
Taylor [14] consider all subsets of C in decreasing order of
cardinality, repeatedly applying the algorithm of [10] un-
til a largest subset of C which admits a perfect phylogeny
is found. The ideas behind the algorithms of [1] and [10]
have also been utilized and extended by Ferndndez-Baca
and Lagergren [6] in their algorithm for computing near-
perfect phylogenies in which the constraints on the output
have been relaxed in order to permit non-perfect phyloge-

nies whose so-called penalty score is less than or equal to
a prespecified parameter q (see [6] for details).

The motivation for considering a bounded number of
states is that characters based on directly observable traits
are, by the way they are defined, naturally bounded by
some small number (often 2). When biomolecular data is
used to define characters, the number of allowed states is
typically bounded by a constant; e. g., ¥ = 2 for SNP mark-
ers, r = 4 for DNA or RNA sequences, or r = 20 for amino-
acid sequences (see also Encyclopedia » Directed Per-
fect Phylogeny (Binary Characters)). Moreover, characters
with r = 2 can be useful in comparative linguistics [8].

Open Problems

An important open problem is to determine whether
the running time of the algorithm of Kannan and
Warnow [10] can be improved. As pointed out in [5], it
would be especially interesting to find out if The Perfect
Phylogeny Problem is solvable in O(2%" nm) time for any r,
or more generally, in O(f(r)-nm) time, where f is a func-
tion of r which does not depend on n or m, since this
would match the fastest known algorithm for the special
case r = 2 (see Table 1). Another open problem is to es-
tablish lower bounds on the computational complexity of
The Perfect Phylogeny Problem with a bounded number
of states.

Cross References

» Directed Perfect Phylogeny (Binary Characters)
» Perfect Phylogeny Haplotyping

Perfect Phylogeny Haplotyping

647

Acknowledgments

Supported in part by Kyushu University, JSPS (Japan Society for the
Promotion of Science), and INRIA Lille - Nord Europe.

Recommended Reading

1. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm
for the perfect phylogeny problem when the number of char-
acter states is fixed. SIAM J. Comput. 23, 1216-1224 (1994)

2. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against
perfect phylogeny. In: Proceedings of the 19th Interna-
tional Colloquium on Automata, Languages and Programming
(ICALP 1992). Lecture Notes in Computer Science, vol. 623, pp.
273-283. Springer, Berlin (1992)

3. Dress, A, Steel, M.: Convex tree realizations of partitions. Appl.
Math. Lett. 5, 3-6 (1992)

4. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc.
Sunderland, Massachusetts (2004)

5. Fernandez-Baca, D.: The Perfect Phylogeny Problem. In: Cheng,
X.,Du D.-Z. (eds.) Steiner Trees in Industry, pp. 203-234. Kluwer
Academic Publishers, Dordrecht, Netherlands (2001)

6. Fernandez-Baca, D., Lagergren, J.: A polynomial-time algo-
rithm for near-perfect phylogeny. SIAM J. Comput. 32, 1115-
1127 (2003)

7. Gusfield, D.M.: Efficient algorithms for inferring evolutionary
trees. Networks 21, 19-28 (1991)

8. Kanj, I.A., Nakhleh, L., Xia, G.: Reconstructing evolution of nat-
ural languages: Complexity and parametrized algorithms. In:
Proceedings of the 12th Annual International Computing and
Combinatorics Conference (COCOON 2006). Lecture Notes in
Computer Science, vol. 4112, pp. 299-308. Springer, Berlin
(2006)

9. Kannan, S., Warnow, T.: Inferring evolutionary history from
DNA sequences. SIAM J. Comput. 23, 713-737 (1994)

10. Kannan, S., Warnow, T.: A fast algorithm for the computation
and enumeration of perfect phylogenies. SIAM J. Comput. 26,
1749-1763 (1997)

11. McMorris, F.R.: On the compatibility of binary qualitative taxo-
nomic characters. Bull. Math. Biol. 39, 133-138 (1977)

12. Setubal, J.C, Meidanis, J.: Introduction to Computational
Molecular Biology. PWS Publishing Company, Boston (1997)

13. Steel, M.A.: The complexity of reconstructing trees from qual-
itative characters and subtrees. J. Classification 9, 91-116
(1992)

14. Warnow, T., Ringe, D., Taylor, A.: Reconstructing the evolu-
tionary history of natural languages. In: Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA'96), pp. 314-322 (1996)

|
Perfect Phylogeny Haplotyping

2005; Ding, Filkov, Gusfield

GIUSEPPE LANCIA
Department of Mathematics and Computer Science,
University of Udine, Udine, Italy

Keywords and Synonyms

Alleles phasing

Problem Definition

In the context of the perfect phylogeny haplotyping (PPH)
problem, each vector h € {0,1}" is called a haplotype,
while each vector g € {0, 1,2} is called a genotype. Hap-
lotypes are binary encodings of DNA sequences, while
genotypes are ternary encodings of pairs of DNA se-
quences (one sequence for each of the two homologous
copies of a certain chromosome).

Two haplotypes b’ and h” are said to resolve a geno-
type g if, at each position j: (i) if g; € {0, 1} then both
W, = gj and b = gj; (ii) if g; = 2 then either =0 and
h;’ =1or h; =1 and h;’ =0. If ¥’ and K" resolve g, we
write g = W' + h”. An instance of the PPH problem con-
sists of a set G = {g', g2, ..., g"} of genotypes. A set H of
haplotypes such that, for each g € G, there are b, i € H
with g = b’ + 1", is called a resolving set for G.

A perfect phylogeny for a set H of haplotypes is a rooted
tree T for which
o the set of leaves is H and the root is labeled by some

binary vector r;

eachindex j € {1,..., m} labels exactly one edge of T}

ifan edge e is labeled by an index k, then, for each leaf h

that can be reached from the root via a path through e,

itis hy # ry.

Without loss of generality, it can be assumed that the
vector labeling the root is r = 0. Within the PPH problem,
T is meant to represent the evolution of the sequences at
the leaves from a common ancestral sequence (the root).
Each edge labeled with an index represents a point in time
when a mutation happened at a specific site. This model
of evolution is also known as coalescent [11]. It can be
shown that a perfect phylogeny for H exists if and only if
for all choices of four haplotypes h!,..., h* € H and two
indices i, j,

{h?h%.1 < a <4} 71{00,01,10,11} .

Given the above definitions, the problem surveyed in
this entry is the following:

Perfect Phylogeny Haplotyping Problem (PPH):
Given a set G of genotypes, find a resolving set H of hap-
lotypes and a perfect phylogeny T for H, or determine that
such a resolving set does not exist.

In a slightly different version of the above problem, one
may require to find all perfect phylogenies for H instead of
just one (in fact, all known algorithms for PPH do find all
perfect phylogenies).

The perfect phylogeny problem was introduced by
Gusfield [7], who also proposed a nearly linear-time
O(nm a(nm))-algorithm for its solution (where () is the
extremely slowly growing inverse Ackerman function).

