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Problem Definition

Let S = {s1,52,...,5,} be a set of elements called objects,
and let C ={cy,c2,...,cm} be a set of functions from S
to {0, 1} called characters. For each object s; € S and char-
acter ¢; € C, it is said that s; has ¢; if ¢j(s;) = 1 or that s;
does not have c; if cj(s;) = 0, respectively (in this sense,
characters are binary). Then the set S and its relation to C
can be naturally represented by a matrix M of size (n x m)
satisfying M[i, j] = ¢;(s;) for every i € {1,2,...,n} and
je{1,2,..., m}. Such a matrix M is called a binary char-
acter state matrix.

Next, for each s; € S, define the set C;; = {c; €
C: s; has ¢;}. A phylogeny for S is a tree whose leaves are
bijectively labeled by S, and a directed perfect phylogeny for
(S, C) (if one exists) is a rooted phylogeny T for S in which
each ¢; € Cisassociated with exactly one edge of T'in such
away thatfor anys; € S, the set of all characters associated

with the edges on the path in T from the root to leaf s; is
equal to Cs;. See Figs. 1 and 2 for two examples.
Now, define the following problem.

Problem 1 (The Directed Perfect Phylogeny Problem for
Binary Characters)
INPUT: A binary character state matrix M for some S and C.
OUTPUT: A directed perfect phylogeny for (S, C), if one ex-
ists; otherwise, null.

Key Results

For the presentation below, for each ¢; € C, define a set
S¢; = {si € S:s;hasc;j}. The next lemma is the key to
solving The Directed Perfect Phylogeny Problem for Bi-
nary Characters efficiently. It was first proved by Es-
tabrook, Johnson, and McMorris [2,3], and is also known
in the literature as the pairwise compatibility theorem.
A constructive proof of the lemma can be found in,
e.g.,[7,11].

Lemma 1([2,3]) There exists a directed perfect phylogeny
for (S,C) if and only if for all c;,cx € C it holds that
Sc;NSe, =0, 8, S Scp 0r Se, S S

Using Lemma 1, it is straightforward to construct a top-
down algorithm for the problem that runs in O(nm?)
time. However, a faster algorithm is possible. Gusfield [6]
observed that after sorting the columns of M in non-
increasing order all duplicate copies of a column appear in
a consecutive block of columns and column j is to the right
of column k if S¢; is a proper subset of S, , and exploited
this fact together with Lemma 1 to obtain the following
result:

Theorem 2 ([6]) The Directed Perfect Phylogeny Problem
for Binary Characters can be solved in O(nm) time.

For a detailed description of the original algorithm and
a proof of its correctness, see [6] or [11]. A conceptually
simplified version of the algorithm based on keyword trees
can be found in [7]. Gusfield [6] also gave an adversary ar-
gument to prove a corresponding lower bound of £2(nm)
on the running time, showing that his algorithm is time
optimal:

Theorem 3 ([6]) Any algorithm that decides if a given
binary character state matrix M admits a directed perfect
phylogeny must, in the worst case, examine all entries of M.

Agarwala, Fernandez-Baca, and Slutzki [1] noted that the
input binary character state matrix is often sparse, i.e., in
general, most of the objects will not have most of the char-
acters. In addition, they noted that for the sparse case, it
is more efficient to represent the input (S, C) by all the
sets S for j € {1,2, ..., m}, where each set S¢; is defined
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M ‘ Ci Ca2 C3 C4 C; Cg C7 Cg
550 0 1 1 1 0 1 O
200 1 1 1 0 0 0 O
s3(1 0 0 O O 1 0 1
s4/0 0 1 1 0 0 1 O
ss|1 0 0 O O O 0 O

a

Directed Perfect Phylogeny (Binary Characters), Figure 1

a A (5 x 8)-binary character state matrix M. b A directed perfect phylogeny for (S,C)

Directed Perfect Phylogeny (Binary Characters), Figure 2
This binary character state matrix admits no directed perfect

phylogeny

as above and each S, is specified as a linked list, than by
using a binary character state matrix. Agarwala et al. [1]
proved that with this alternative representation of S and C,
the algorithm of Gusfield can be modified to run in time
proportional to the total number of 1’s in the correspond-
ing binary character state matrix!:

Theorem 4 ([1]) The variant of The Directed Perfect Phy-
logeny Problem for Binary Characters in which the in-
put is given as linked lists representing all the sets S,
for je{l,2,...,m} can be solved in O(h) time, where
h = Z;nzl |Sc/-|-

For a description of the algorithm, refer to [1] or [5].

Applications

Directed perfect phylogenies for binary characters are used
to describe the evolutionary history for a set of objects that
share some observable traits and that have evolved from
a “blank” ancestral object which has none of the traits.
Intuitively, the root of a directed perfect phylogeny cor-
responds to the blank ancestral object and each directed
edge e = (u,v) corresponds to an evolutionary event in
which the hypothesized ancestor represented by u gains
the characters associated with e, transforming it into the
hypothesized ancestor or object represented by v. It is as-

INote that Theorem 4 does not contradict Theorem 3; in fact,
Gusfield’s lower bound argument considers an input matrix consist-
ing mostly of 1’s.

sumed that each character can emerge once only during
the evolutionary history and is never lost after it has been
gained?, so a leaf s; is a descendant of the edge associated
with a character ¢; if and only if s5; has ;.

Binary characters are commonly used by biologists and
linguists. Traditionally, morphological traits or directly
observable features of species were employed by biolo-
gists as binary characters, and recently, binary characters
based on genomic information such as substrings in DNA
or protein sequences, protein regulation data, and shared
gaps in a given multiple alignment have become more and
more prevalent. Section 17.3.2 in [7] mentions several ex-
amples where phylogenetic trees have been successfully
constructed based on such types of binary character data.
In the context of reconstructing the evolutionary history
of natural languages, linguists often use phonological and
morphological characters with just two states [9].

The Directed Perfect Phylogeny Problem for Binary
Characters is closely related to The Perfect Phylogeny Prob-
lem, a fundamental problem in computational evolution-
ary biology and phylogenetic reconstruction [4,5,11]. This
problem (also described in more detail in entry » Per-
fect Phylogeny (Bounded Number of States)) introduces
non-binary characters so that each character ¢; € C has
a set of allowed states {0,1,...,r; — 1} for some in-
teger j, and for each s; € S, character ¢; is in one of
its allowed states. Generalizing the notation used above,
define the set Sq,a for every « € {0,1,...,r; — 1} by
Scja = {si € S : the state of s; on ¢; is ar}. Then, the ob-
jective of The Perfect Phylogeny Problem is to construct (if
possible) an unrooted phylogeny T for S such that the fol-
lowing holds: for each ¢; € C and distinct states o, 8 of ¢j,

2When this requirement is too strict, one can relax it to permit
errors; for example, let characters be associated with more than one
edge in the phylogeny (i.e., allow each character to emerge many
times) but minimize the total number of associations (Camin-Sokal
optimization), or keep the requirement that each character emerges
only once but allow it to be lost multiple times (Dollo parsimony) [4,5]
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the minimal subtree of T that connects S, s and the min-
imal subtree of T that connects S ; g are vertex-disjoint.
McMorris [10] showed that the special case with r; = 2
for all ¢; € C can be reduced to The Directed Perfect
Phylogeny Problem for Binary Characters in O(nm) time
(for each ¢; € C, if the number of 1’s in column j of M
is greater than the number of 0’s then set entry M[i, j] to
1—-M[i, jlforalli € {1,2,..., n}). Therefore, another ap-
plication of Gusfield’s algorithm [6] is as a subroutine for
solving The Perfect Phylogeny Problem when r; = 2 for
all ¢; € Cin O(nm) time. Even more generally, The Per-
fect Phylogeny Problem for directed as well as undirected
cladistic characters can be solved in polynomial time by
a similar reduction to The Directed Perfect Phylogeny
Problem for Binary Characters (see [5]).

In addition to the above, it is possible to apply Gus-
field’s algorithm to determine whether two given trees de-
scribe compatible evolutionary history, and if so, merge
them into a single tree so that no branching information
is lost (see [6] for details). Finally, Gusfield’s algorithm has
also been used by Hanisch, Zimmer, and Lengauer [8] to
implement a particular operation on documents defined
in their Protein Markup Language (ProML) specification.

Cross References

» Perfect Phylogeny (Bounded Number of States)
» Perfect Phylogeny Haplotyping
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Problem Definition

The performance of a communication network is affected
by the packet collisions which occur when two or more
packets appear simultaneously in the same network node
(router) and all these packets wish to follow the same out-
going link from the node. Since network links have limited
available bandwidth, the collided packets wait on buffers
until the collisions are resolved. Collisions cause delays in
the packet delivery time and also contribute to the network
performance degradation.

Direct routing is a packet delivery method which
avoids packet collisions in the network. In direct routing,
after a packet is injected into the network it follows a path
to its destination without colliding with other packets, and
thus without delays due to buffering, until the packet is ab-
sorbed at its destination node. The only delay that a packet
experiences is at the source node while it waits to be in-
jected into the network.

In order to formulate the direct routing problem, the
network is modeled as a graph where all the network nodes
are synchronized with a common time clock. Network
links are bidirectional, and at each time step any link can
be crossed by at most two packets, one packet in each di-
rection. Given a set of packets, the routing time is defined
to be the time duration between the first packet injection
and the last packet absorbtion.

Consider a set of N packets, where each packet has
its own source and destination node. In the direct rout-



