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Probl em Defi n i ti on

Let S = f s1 ; s2 ; : : : ; sn g be a set of elements called objects,

and let C = f c1 ; c2 ; : : : ; cm g be a set of functions from S

to f0 ; 1 g called characters. For each object s i 2 S and char-

acter c j 2 C , it is said that si has cj if c j( s i ) = 1 or that si

does not have cj if c j( s i ) = 0, respectively ( in this sense,

characters are binary) . Then the set S and its relation to C

can be naturally represented by a matrix M of size ( n � m )

satisfying M[ i ; j] = c j( s i ) for every i 2 f 1 ; 2 ; : : : ; n g and

j 2 f 1 ; 2 ; : : : ; m g . Such a matrix M is called a binary char-

acter state matrix.

Next, for each s i 2 S , define the set Cs i = f c j 2

C : s i has c jg . A phylogeny for S is a tree whose leaves are

bijectively labeled by S , and a directed perfect phylogen y for

(S, C) ( if one exists) is a rooted phylogeny T for S in which

each c j 2 C is associated with exactly one edge ofT in such

a way that for any s i 2 S , the set of all characters associated

with the edges on the path in T from the root to leaf si is

equal to Cs i . See Figs . 1 and 2 for two examples .

Now, define the following problem.

Problem 1 (The Directed Perfect Phylogeny Problem for

Binary Characters)

INPUT : A binary character state matrix M for some S and C.

OUTPUT : A directed perfect phylogeny for (S, C), ifone ex-

ists; otherwise, null.

Key Resu l ts

For the presentation below, for each c j 2 C , define a set

S c j = f s i 2 S : s i has c jg . The next lemma is the key to

solving The Directed Perfect Phylogeny Problem for Bi-

nary Characters efficiently. It was first proved by Es-

tabrook, Johnson, and McMorris [ 2 ,3 ] , and is also known

in the literature as the pairwise compatibility theorem .

A constructive proof of the lemma can be found in,

e . g. , [ 7 , 1 1 ] .

Lemma 1 ( [ 2,3 ] ) There exists a directed perfect phylogeny

for (S, C) if an d on ly if for all c j; c k 2 C it holds that

S c j \ S c k = ; , S c j � S c k , or S c k � S c j .

Using Lemma 1 , it is straightforward to construct a top-

down algorithm for the problem that runs in O ( n m 2 )

time. However, a faster algorithm is possible . Gusfield [ 6]

observed that after sorting the columns of M in non-

increasing order all duplicate copies of a column appear in

a consecutive block of columns and column j is to the right

of column k if S c j is a proper subset of S c k , and exploited

this fact together with Lemma 1 to obtain the following

result:

Theorem 2 ( [ 6] ) The Directed Perfect Phylogeny Problem

for Bin ary Characters can be solved in O ( n m ) time.

For a detailed description of the original algorithm and

a proof of its correctness , see [ 6] or [ 1 1 ] . A conceptually

simplified version of the algorithm based on keyword trees

can be found in [ 7] . Gusfield [ 6] also gave an adversary ar-

gument to prove a corresponding lower bound of˝ ( n m )

on the running time, showing that his algorithm is time

optimal:

Theorem 3 ( [ 6] ) Any algorithm that decides ifa given

binary character state matrix M admits a directed perfect

phylogeny must, in the worst case, examine all entries ofM.

Agarwala, Fernández-Baca, and Slutzki [ 1 ] noted that the

input binary character state matrix is often sparse, i. e . , in

general, most of the objects will not have most of the char-

acters . In addition, they noted that for the sparse case, it

is more efficient to represent the input (S , C) by all the

sets S c j for j 2 f 1 ; 2 ; : : : ; m g , where each set S c j is defined
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Di rected Perfect Phyl ogeny (B i n ary Ch aracters) , F i gu re 1

a A (5 × 8) -b i n ary ch aracter state matr i xM. b A d i rected perfect phyl ogeny for (S,C)

M c1 c2

s 1 1 0

s 2 1 1

s 3 0 1

Di rected Perfect Phyl ogeny (B i n ary Ch aracters) , F i gu re 2

Th i s b i n ary ch aracter state matr i x adm i ts no d i rected perfect

phyl ogeny

as above and each S c j is specified as a linked list, than by

using a binary character state matrix. Agarwala et al. [ 1 ]

proved that with this alternative representation of S and C ,

the algorithm of Gusfield can be modified to run in time

proportional to the total number of 1 ’ s in the correspond-

ing binary character state matrix1 :

Theorem 4 ( [ 1 ] ) The variant ofThe Directed Perfect Phy-

logeny Problem for Binary Characters in which the in -

put is given as linked lists representing all the sets S c j

for j 2 f 1 ; 2 ; : : : ; m g can be solved in O(h) time, where

h =
Pm

j=1 j S c j j .

For a description of the algorithm, refer to [ 1 ] or [ 5 ] .

Appl i cati ons

Directed perfect phylogenies for binary characters are used

to describe the evolutionary history for a set of objects that

share some observable traits and that have evolved from

a “blank” ancestral object which has none of the traits .

Intuitively, the root of a directed perfect phylogeny cor-

responds to the blank ancestral object and each directed

edge e = (u ; v ) corresponds to an evolutionary event in

which the hypothesized ancestor represented by u gains

the characters associated with e , transforming it into the

hypothesized ancestor or object represented by v . I t is as-

1 Note that Theorem 4 does not contradict Theorem 3 ; in fact,

Gusfield’ s lower bound argument considers an input matrix consist-

ing mostly of 1 ’ s .

sumed that each character can emerge once only during

the evolutionary history and is never lost after it has been

gained2 , so a leaf si is a descendant of the edge associated

with a character cj if and only if si has cj.

Binary characters are commonly used by biologists and

linguists . Traditionally, morphological traits or directly

observable features of species were employed by biolo-

gists as binary characters , and recently, binary characters

based on genomic information such as substrings in DNA

or protein sequences , protein regulation data, and shared

gaps in a given multiple alignment have become more and

more prevalent. Section 1 7 . 3 . 2 in [ 7] mentions several ex-

amples where phylogenetic trees have been successfully

constructed based on such types of binary character data.

In the context of reconstructing the evolutionary history

of natural languages, linguists often use phonological and

morphological characters with just two states [ 9 ] .

The Directed Perfect Phylogeny Problem for Binary

Characters is closely related to The Perfect Phylogeny Prob-

lem , a fundamental problem in computational evolution-

ary biology and phylogenetic reconstruction [ 4,5 , 1 1 ] . This

problem (also described in more detail in entry � Per-

fect Phylogeny (Bounded Number of States) ) introduces

non-binary characters so that each character c j 2 C has

a set of allowed states f0 ; 1 ; : : : ; r j � 1 g for some in-

teger rj, and for each s i 2 S , character cj is in one of

its allowed states . Generalizing the notation used above,

define the set S c j; ˛ for every ˛ 2 f0 ; 1 ; : : : ; r j � 1 g by

S c j; ˛ = f s i 2 S : the state of s i on c j is ˛g . Then, the ob-

jective of The Perfect Phylogeny Problem is to construct ( if

possible) an unrooted phylogeny T for S such that the fol-

lowing holds : for each c j 2 C and distinct states ˛; ˇ of cj,

2When this requirement is too strict, one can relax it to permit

errors; for example, let characters be associated with more than one

edge in the phylogeny ( i. e . , allow each character to emerge many

times) but minimize the total number of associations (Camin–Sokal

optimization ) , or keep the requirement that each character emerges

only once but allow it to be lost multiple times (Dollo parsimony) [ 4,5 ]
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the minimal subtree of T that connects S c j; ˛ and the min-

imal subtree of T that connects S c j; ˇ are vertex-disjoint.

McMorris [ 1 0] showed that the special case with r j = 2

for all c j 2 C can be reduced to The Directed Perfect

Phylogeny Problem for Binary Characters in O ( n m ) time

( for each c j 2 C , if the number of 1 ’ s in column j of M

is greater than the number of 0’ s then set entry M[ i ; j] to

1 � M[ i ; j] for all i 2 f 1 ; 2 ; : : : ; n g ) . Therefore, another ap-

plication of Gusfield’ s algorithm [ 6] is as a subroutine for

solving The Perfect Phylogeny Problem when r j = 2 for

all c j 2 C in O ( n m ) time. Even more generally, The Per-

fect Phylogeny Problem for directed as well as undirected

cladistic characters can be solved in polynomial time by

a similar reduction to The Directed Perfect Phylogeny

Problem for Binary Characters ( see [ 5 ] ) .

In addition to the above, it is possible to apply Gus-

field’ s algorithm to determine whether two given trees de-

scribe compatible evolutionary history, and if so, merge

them into a single tree so that no branching information

is lost ( see [ 6] for details) . Finally, Gusfield’ s algorithm has

also been used by Hanisch, Zimmer, and Lengauer [ 8 ] to

implement a particular operation on documents defined

in their Protein Markup Language (ProML) specification.
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Probl em Defi n i ti on

The performance of a communication network is affected

by the packet collisions which occur when two or more

packets appear simultaneously in the same network node

( router) and all these packets wish to follow the same out-

going link from the node. Since network links have limited

available bandwidth, the collided packets wait on buffers

until the collisions are resolved. Collisions cause delays in

the packet delivery time and also contribute to the network

performance degradation.

Direct routing is a packet delivery method which

avoids packet collisions in the network. In direct routing,

after a packet is injected into the network it follows a path

to its destination without colliding with other packets , and

thus without delays due to buffering, until the packet is ab-

sorbed at its destination node. The only delay that a packet

experiences is at the source node while it waits to be in-

jected into the network.

In order to formulate the direct routing problem, the

network is modeled as a graph where all the network nodes

are synchronized with a common time clock. Network

links are bidirectional, and at each time step any link can

be crossed by at most two packets , one packet in each di-

rection. Given a set of packets , the routing time is defined

to be the time duration between the first packet injection

and the last packet absorbtion.

Consider a set of N packets , where each packet has

its own source and destination node. In the direct rout-


